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Abstract:  
Building Information Models (BIMs) and City Information Models (CIMs) have flourished in 
building and urban studies independently over the past decade. Semantic enrichment is an 
indispensable process that adds new semantics such as geometric, non-geometric, and 
topological information into existing BIMs or CIMs to enable multidisciplinary applications in 
fields such as construction management, geoinformatics, and urban planning. These two paths 
are now coming to a juncture for integration and juxtaposition. However, a critical review of 
the semantic enrichment of BIM and CIM is missing in the literature. This research aims to 
probe into semantic enrichment by comparing its similarities and differences between BIM and 
CIM over a ten-year time span. The research methods include establishing a uniform 
conceptual model, and sourcing and analyzing 44 pertinent cases in the literature. The findings 
plot the terminologies, methods, scopes, and trends for the semantic enrichment approaches in 
the two domains. With the increasing availability of data sources, algorithms, and computing 
power, they cross the border to enter each other’s domain. Future research will likely gain new 
momentums from the demands of value-added applications, development of remote sensing 
devices, intelligent data processing algorithms, interoperability between BIM and CIM 
software platforms, and emerging technologies such as big data analytics.  
 
Keywords: Building Information Model; City Information Model; Geographic Information 
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1. Background 1 

In the architecture, engineering, and construction (AEC) industry, information is the common 2 

keyword of the Building Information Model (BIM) and City Information Model (CIM). The 3 

concept of BIM is coined to refer to a digital representation of a facility’s physical and 4 

functional characteristics; it is a shared knowledge resource for information about a facility, 5 

forming a reliable information foundation for decisions throughout its life cycle (NIBS, 2015). 6 
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Building information modeling is a nomenclatural term used to refer to a family of technologies 7 

and related practices used to represent and manage information used and created for the process 8 

of designing, constructing, and operating buildings (Davies and Harty, 2011). BIM has roots 9 

that can be traced back to the production and manufacturing industry, where designers tend to 10 

develop a digital model of the product for optimization and prototyping before it is mass-11 

produced (Eastman et al., 2011).  12 

 13 

The concept of CIM has emerged in parallel to refer to a system of urban elements and 14 

environments represented in 2D and 3D symbols (Stojanovski, 2013). The gerund, city 15 

information modeling, is used to represent the technologies and practices used to develop a city 16 

information model and harness its power for various smart applications, e.g., navigations, 17 

transportation, urban climate, and urban morphology (Xu et al., 2014), which are normally 18 

placed under the umbrella of a smart city. 3D city models as the baseline of CIM has a much 19 

longer history if one considers its roots in Geographic Information System (GIS), a computer 20 

system for capturing, storing, checking, and displaying data related to positions on the Earth’s 21 

surface (NGS, 2012). According to Julin et al. (2018), such 3D city models are typically built 22 

by merging photogrammetry and laser scanning data with GIS data.  23 

 24 

The essential difference between CIM and GIS is the scope and form of the “I,” i.e., information. 25 

The information in GIS is explicitly referenced according to the scope of the Earth’s surface 26 

and often managed in forms of ‘layers’ (Goodchild, 1991; Lu et al., 2018). In contrast, a CIM’s 27 

scope focuses on urban areas but includes more types of non-GIS information, e.g., BIM, Light 28 

Detection and Ranging (LiDAR), inhabitant behaviors, and city energy simulation, and 29 

managed in the form of cross-reference relation ‘networks’—like a BIM (Xu et al., 2014; Liu 30 

et al., 2017). Thus, in this paper, at the risk of oversimplification, a 3D city model in GIS is 31 

treated as a specific type of CIM. In recent years, other buzzwords such as the ‘Cyber-Physical 32 

System’ and ‘digital twin’ are emerging (Xue et al., 2020) from agriculture, defense, energy, 33 

healthcare, transportation, and manufacturing systems to represent the virtual, digital models 34 

of these systems. In non-technical language, one can perceive the ‘real-time’ BIM and CIM as 35 

the cyber replica or digital twin of a building and a city, respectively. 36 

 37 

Characteristics of BIM and CIM information are essential for differentiating and understanding 38 

these buzzwords. Information is the shared key to enable their designated applications, though 39 

the scope and organization are different. As listed in Table 1, BIM represents building elements 40 

(e.g., beams and columns) with building-level information (e.g., geometric details, energy 41 

usage data, and life cycle costing information) to meet AEC industrial needs (Karan et al., 42 

2016). The taxonomy of BIM information distinguishes geometric, semantic, and topological 43 

types (Pratt-Hartmann, 2004; Schlueter and Thesseling, 2009). Geometric information directly 44 

relates to the shapes and forms of facilities, whereas semantic information captures their 45 

intrinsic properties (e.g., functionality), and topological information gives the relationships 46 
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among these objects. In comparison, CIM involves a three-dimensional model that connects 47 

buildings and other urban information sources (e.g., roads, public spaces, street lights, and even 48 

people on the street) in a city (Xu et al., 2014).  49 

 50 

Table 1. Scope and organization of information in BIM, and CIM 51 

 Dimension of 
geometry 

Scope of information  Organization of relational 
information 

BIM 3D Up to building level (e.g., rooms, buildings, and 
bridges) 

Explicit via relations between 
3D components (e.g., joints) 

CIM 3D Up to city level (e.g., metro shop, park bench, city 
hall, street greenery, and landscape) 

Geo-referenced 3D City 
elements  

 52 

The term ‘semantic enrichment’ has been defined in several ways. For example, Clarke and 53 

Harley (2014) defined semantic enrichment as the process of adding a layer of topic metadata 54 

to content so that the machine can understand and connect with it. Later, Sacks et al. (2017) 55 

pointed out that semantic enrichment aims to add absent or new information, compile as-is or 56 

as-built conditions, and extend the schemas to existing BIMs/CIMs. Bloch and Sacks (2018) 57 

further define semantic enrichment as an indispensable process that encompasses the 58 

classification of objects, aggregation and grouping, unique identification, completion of 59 

missing objects, and reconstruction of occluded objects in the case of application to models. 60 

This study adopts Bloch and Sacks’ (2018) definition given its comprehensiveness. The 61 

exterior geometry of a building or a city might be fixed from the outset; semantic information, 62 

however, will update along the way when they are developed, utilized, and updated. These 63 

updated semantics, e.g., as-built or as-is conditions, should be properly captured in BIM or 64 

CIM. Over the past decade, semantics enrichment has been developed in BIM and CIM 65 

independently, and it remains so. Nevertheless, scholars are increasingly interested in seeing 66 

more details of buildings in a CIM. Many review papers have reflected the up-to-date 67 

processing of building and city data to create new BIMs/CIMs, e.g., for buildings (Volk et al., 68 

2014), indoor environments (Kang et al., 2020), roads (Wang et al., 2016), and applications 69 

such as building energy (Reinhart and Davila, 2016) and urban ecology (Berling-Wolff and 70 

Wu, 2004). However, a study to juxtapose the research niche of enriching existing models is 71 

absent and thus much desired. This study is particularly opportune because BIM and CIM, 72 

previously dominated by giant software vendors, are starting to join hands with each other (Esri, 73 

2019). Therefore, it would be intriguing to review what has been researched in BIM and CIM 74 

semantic enrichment and to extrapolate what will likely happen under the general trend of BIM 75 

and CIM integration.  76 

 77 

The primary aim of this research is to compare the semantic enrichment studies in BIM and 78 

CIM in the past 10 years for outlining the research trends and prospects. The goal is achieved 79 

by deploying an analytical framework that includes a conceptual model, a set of comparative 80 

studies, and future direction predictions. The rest of this article consists of four sections. 81 
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Section 2 describes the research methodology. Section 3 compares the semantic enrichment of 82 

BIM and CIM. Section 4 gives the trends and prospects of semantic enrichment of BIM and 83 

CIM. Findings are drawn in Section 5.   84 

 85 

2. Research methods 86 

The primary research method adopted in this paper is a comparative archival study. It follows 87 

a four-step methodology to conduct the study: (1) Developing a guiding conceptual model, (2) 88 

Data collection by published case selection and decoding, (3) Comparative study of semantics 89 

enrichment for BIM and CIM, and (4) Extrapolation of the future development. 90 

 91 

2.1 Guiding conceptual model  92 

A guiding conceptual model was developed to facilitate data collection and analysis. As shown 93 

in Figure 1, the conceptual model includes six interrelated components, namely, (1) The subject 94 

facility, (2) Baseline model, (3) Sources of new semantics, (4) Semantic enrichment method, 95 

(5) Enriched model, and (6) Application. For a given facility, semantic enrichment is the 96 

process that extracts new semantics from the new semantics sources and adds them to the 97 

baseline BIM or CIM so that the updated model has a richer digital representation of the facility.  98 

 99 

 100 

Figure 1. A guiding conceptual model of semantic enrichment in BIM and CIM 101 

 102 

The matrices for measuring the new semantic richness of BIM and CIM are the Level of 103 

Development (LOD) and the Level of Detail (LoD), respectively, as shown in Figure 1. LOD 104 

for BIM is defined on the temporal development of buildings, where LOD 100 is the conceptual 105 

design without shape information or geometric representation and LOD 500 is the as-is BIM 106 

with verified representation in terms of size, shape, location, quantity, and orientation (Boton 107 

et al., 2015; Lu et al., 2018). There are intermediate levels, such as LOD 350 and LOD 450 108 

(Chen et al., 2015; Abualdenien and Borrmann, 2019). So, the semantics in a BIM can be 109 
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enriched by designs, plans, surveying, documents, inspections, and operations along the 110 

building life cycle. In this view, BIM with replenishing semantics can be a potential baseline 111 

model for enriching CIM. In contrast, LoD, which originated in the CityGML (City Geography 112 

Markup Language) standard (Chen et al., 2020), emphasizes the spatial detailing in CIM. For 113 

buildings, LoD 0 denotes 2.5D block models, and LoD 4 means a ‘walkable’ model with 114 

building interiors. For example, a well-designed BIM in the tendering phase can be LoD 4.3 115 

for CityGML, but only LOD 200 for BIM. In non-building facilities such as vegetation, LoD 116 

0 represents crown projection, whereas LOD 4 gives third-level branches (Ortega-Córdova, 117 

2018). There also can be intermediate LoD levels, such as LoD 1.1 and LoD 3.4 in Biljecki et 118 

al. (2016b).  119 

 120 

The six components in the conceptual model can be further described with categorical values, 121 

as listed in Table 2. The subject facility can be indoor space and furniture, buildings, 122 

infrastructure, city objects, or even the environment. Traditionally, there are two silos, i.e., 123 

building level and city level, which do not talk to each other. A baseline model is a given, 124 

normally preliminary, digital representation of the facility. It can be a BIM or CIM. Here, a 125 

CIM is a fully 3D city model or a 2D GIS model with certain city objects linked to their 3D 126 

models. Semantic enrichment in the BIM and CIM integration scenario focuses on the 127 

interoperability problems between the two. The minor descriptor in Table 2 shows that the 128 

baseline model could be in an open or commercially protected format.  129 

 130 

Table 2. Descriptors of the six components in the conceptual model of semantic enrichment 131 

Component Descriptor Examples Major Minor Code 
Subject 
facility 

Indoor  IN Furniture, room space 
Building  BLD Facades, structural elements 
Infrastructure  INFR Bridge, tunnel 
City objects  CO Lamppost, park 
Environment  RE Vegetation 

Baseline 
model 

BIM Open BIM-O IFC 
Commercial BIM-C Autodesk Revit 

CIM Open CIM-O CityGML 
Commercial CIM-C Esri ArcGIS 

Source of 
new 
semantics 

Data Raster (2D/3D)  D-R Digital pictures, radar images, 
voxels  

Vector (2D/3D) D-V LiDAR points, lines, polygons 
Tabular  D-T Descriptive data stored in rows 

and columns 
Existing components BIM C-BIM BIM components 

CIM C-CIM 3D city objects 
Ontology Formal O-F Complete ontology definition 

Ad hoc rules  O-R Case-specific rules 
Spatial relations O-S Geological relationship 

Automated 
method 

Semantic reasoning  Rsn Rule-based reasoning 
Semantic registration 

 
Rgst ICP algorithm 

Semantic segmentation 
 

Sgmt Supervised 
Enriched 
CIM/BIM  

Format BIM   
CIM   



6 
 

New semantics Geometric NS-G New openings on a wall 
Non-geometric NS-N A group of a furniture 
Both NS-B  

Application Pre-operation   PO Construction progress control  
Operation & 
Maintenance 

 OM Facility maintenance 

Urban environment  UB Urban planning 
Energy  EN Energy performance simulation 
Unspecified case  UNS No application mentioned 

 132 

The source of new semantic can be classified into data, existing components from BIM/CIM, 133 

and ontology. The data can be further divided into raster data, vector data, and tabular data. 134 

Raster data (GISGeography, 2015) could be 2D or 3D, as represented in satellite photos, radar 135 

images, and voxels. Vector data consists of LiDAR points, lines, and polygons (Koch and 136 

Heipke, 2006). Tabular data is descriptive data stored in rows and columns in the database and 137 

can be linked to spatial data. The second category of new semantics sources is the components 138 

stored in various BIM or CIM libraries. They can be produced by manufacturers, software 139 

vendors, or other interested modelers for private or open access. The ontology sources contain 140 

formal ontology, ad hoc rules, and geological relationships. Unlike data and existing BIM/CIM 141 

components, ontology is an often-neglected source of new semantics, particularly position and 142 

typology information.   143 

 144 

In general, there are three types of semantic enrichment methods:  145 

(i) Semantic reasoning based on pre-determined rules or ontology,  146 

(ii) Semantic registration based on many-round trial-and-error searches, and  147 

(iii) Semantic segmentation based on an annotated training data set.  148 

It needs to be pointed out that we excluded manual semantic annotation methods in this study 149 

in that they are labor-intensive, time-consuming, and error-prone (Tang et al., 2010; Brilakis, 150 

2010; Xiong et al., 2013). This is particularly true when it comes to larger sites or city level. 151 

The literature search later in this paper also suggests that pure manual semantic methods are 152 

rarely reported, although they are indispensable to fine-tune or correct the models generated 153 

from automated methods. Some research created new geometric and non-geometric semantics 154 

with a higher LOD/LoD. The output-enriched models could appear as BIM or CIM. Various 155 

applications can be realized through semantic enrichment. As shown in Figure 1, in a sense, 156 

semantic enrichment is the process of inferring and enriching the semantics to a given model 157 

based on domain knowledge (Bloch and Sacks, 2018).  158 

 159 

2.2 Data collection 160 

The data collection process encompassed collecting, identifying, scoping, synthesizing, 161 

screening, and reducing following the Preferred Reporting Items for Systematic Reviews and 162 

Meta-Analyses (PRISMA) standard. The first step encompasses the collection of related 163 

publication by applying the combinations of query strings of “"Semantic enrichment" 164 
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("building information model*" OR BIM OR "geographical information system*" OR GIS OR 165 

"city information model*" OR CIM)” and “((BIM GIS) OR CIM) (semantic* OR LOD OR 166 

interoperability)” in the full-text search engines of Google Scholar. The first query string 167 

focused on the papers explicitly declares the keyword semantic enrichment in related fields, 168 

while the second one aims to include more papers on semantic enrichment in a BIM and CIM 169 

integration scenario. Similar query terms were applied with the ‘snowball’ method in Scopus 170 

and the university library search engine to ensure the completeness of collected data. 171 

 172 

Then, in collecting, identifying, and scoping the literature, a quick screening was conducted to 173 

identify relevant articles regarding the titles, abstracts, and keywords. The priority was given 174 

to the journals in the building and urban domains. The reason is that journal papers offer more 175 

reliable and accurate materials due to rigorous review procedures (Akram et al., 2019). Based 176 

on the proposed conceptual model, non-empirical studies such as commentary and position 177 

papers were excluded. Empirical research can provide ‘verifiable’ evidence, which is 178 

rigorously resultant from specific empirical studies. A snowballing technique (Oraee et al., 179 

2017) was employed to ensure the scope of the review is complete. The full-texts of the 180 

screened publications were reviewed by all of the authors to confirm the coverage’s 181 

completeness. Finally, the process resulted in 44 publications, including 36 journal papers, 4 182 

conference papers, 2 reports, 1 Ph.D. thesis, and 1 book chapter. We extended the scope to 183 

include the early years, but most of the pertinent publications fell between 2010 and 2019 (both 184 

inclusive). The reason is plausible because the National BIM Standard was published in the 185 

United States in 2007, and Open Geospatial Consortium (OGC) members adopted CityGML 186 

as the official standard almost simultaneously in 2008. Thus, we crossed out a few cases before 187 

2010 to reflect the most recent advancements in the fields. 188 

 189 

In the third step of synthesizing, screening, and reducing, we examined the semantic 190 

enrichment methodologies in the 44 publications guided by the conceptual model, as shown in 191 

Figure 1. With the descriptors defined in Table 2, the basic information of the selected 192 

empirical studies is extracted and tabulated in Table 3. It can be seen from Table 3 that the 193 

studies are grouped into clusters. The first 22 publications were enrichment cases for BIM, 194 

while the remaining 22 were for CIM. The publication year, subject facility, baseline model, 195 

source of new semantics, semantic enrichment methods, new semantics, and output enriched 196 

model were coded for each paper. For example, the fourth item Kim et al. (2013) started from 197 

a commercial BIM baseline model (BIM-C), added a new source of vector data (D-V), 198 

employed the Iterative Closest Point (ICP) – a registration method (Rgst), enriched building’s 199 

BIM format (BLD) with new geometric and non-geometric semantics (NS-B), and 200 

implemented an application in the pre-operation phase (PO). 201 

 202 

Table 3. Basic information of the empirical studies on semantic enrichment for BIM and CIM 203 

No. Reference Subject 
facility 

Baseline 
model 

Source Method New 
semantics 

Enriched 
model 

Application 
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 204 

BIM semantic enrichment  
1 Eastman et al. (2010) BLD BIM-O D-T Rsn NS-G BIM PO 
2 Golparvar-Fard (2011) BLD BIM-O D-R Rgst NS-G BIM PO 
3 Bosché (2012) BLD BIM-C D-R Rgst NS-G BIM UNS 
4 Kim et al. (2013) BLD BIM-C D-V Rgst NS-B BIM PO 
5 Xiong et al. (2013) BLD BIM-C D-V Rgst NS-G BIM UNS 
6 Irizarry et al. (2013) BLD BIM-C C-CIM Rsn NS-N BIM PO 
7 Zhang et al. (2014) BLD BIM-O D-T Rsn NS-B BIM PO 
8 Lee et al. (2014) INFR BIM-O O-R Rsn NS-B BIM OM 
9 Hong et al. (2015) IN BIM-C D-R Sgmt NS-G BIM PO 
10 Wang et al. (2015) BLD BIM-C D-R Sgmt NS-G BIM EN 
11 Belsky et al. (2016) BLD BIM-O O-R Rsn NS-G BIM PO 
12 Zeibak-Shini et al. 

(2016) 
BLD BIM-C D-V Rsn NS-B BIM OM 

13 Bassier et al. (2016) BLD BIM-O D-V Sgmt, 
Rsn 

NS-G BIM PO 

14 Sacks et al. (2017) INFR BIM-O D-T Rsn NS-N BIM PO 
15 Bloch et al.  (2018) IN BIM-C O-R, D-T Sgmt, 

Rsn 
NS-B BIM PO 

16 Xue et al. (2018) BLD, 
IN 

BIM-C D-R Rgst NS-B BIM PO 

17 Hamid et al. (2018) BLD, 
IN 

BIM-C D-T Rsn NS-B BIM PO 

18 Bienvenido-Huertas et 
al.  (2019) 

BLD BIM-C D-R Sgmt NS-B BIM OM 

19 Koo et al.  (2019) BLD BIM-O C-BIM Sgmt NS-B BIM PO 
20 Simeone et al. (2019) BLD BIM-C O-R Rsn NS-B BIM OM 
21 Xue et al. (2019a) IN BIM-C D-V Rgst NS-B BIM PO 
22 Xue et al. (2019b) IN BIM-C D-V Rgst NS-B BIM PO 

CIM semantic enrichment  
23 Wittner (2010) BLD, 

IN 
CIM-C D-V, D-R Rsn NS-B CIM UB 

24 El-Mekawy et al. 
(2011) 

BLD CIM-O C-BIM, 
O-F 

Rsn NS-G CIM PO 

25 He et al. (2012) CO CIM-C O-R, D-R Rsn NS-G CIM UB 
26 Irizarry et al. (2012) BLD BIM-C C-CIM Rgst NS-N CIM PO 
27 Löwner et al. (2013) CO CIM-O O-R Rsn NS-G CIM PO 
28 Xu et al. (2014) CO CIM-O C-BIM Rsn NS-N CIM UB 
29 Mignard et al. (2014) CO, 

BLD 
CIM-O O-F Rsn NS-N CIM UB 

30 Borrmann et al. (2015) INFR BIM-O C-CIM Rsn NS-B CIM PO 
31 Amirebrahimi et al. 

(2015) 
BLD BIM-O D-V Rsn NS-B CIM UB 

32 Kang et al. (2015) BLD CIM-O C-BIM Rsn NS-B CIM OM 
33 Biljecki et al. (2016a) BLD CIM-O O-R Rsn NS-G CIM PO 
34 Biljecki et al. (2016b) BLD CIM-O O-F Rsn NS-G CIM EN 
35 Deng et al. (2016) CO CIM-O O-R Rsn NS-G CIM UNS 
36 Hor et al. (2016) CO, 

BLD 
CIM-C O-F Rsn NS-B CIM UB 

37 Karan et al. (2016) BLD, 
RE 

CIM-O O-F Rsn NS-B CIM PO 

38 Peng et al. (2016) BLD CIM-C C-BIM, 
D-V, D-T 

Rsn NS-B CIM PO 

39 Howell et al. (2017) RE BIM-O D-T Rsn NS-G CIM OM 
40 He et al.  (2018) RE CIM-C O-S Rsn NS-B CIM UB 
41 Lee et al. (2018) INFR CIM-C C-BIM, 

D-R, D-T 
Rsn NS-B CIM OM 

42 Wang et al. (2019) CO BIM-O C-CIM Rsn NS-B CIM OM 
43 Zhao et al. (2019) INFR CIM-C C-BIM Rsn NS-G CIM UB 
44 Aleksandrov (2019) BLD, 

RE 
CIM-O D-V, D-R Rsn NS-G CIM UB 
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3. A review of the semantic enrichment of BIM and CIM 205 

An overview of the 44 semantic enrichment studies is visualized as a Sankey chart in Figure 2. 206 

In Figure 2, the six major components in the conceptual model were shown as columns from 207 

left to right, while two columns, ‘model format’ and ‘new semantics,’ were added to explain 208 

the formats of baseline models and the results of methods, respectively. The size of a 209 

rectangular component ‘stock’ indicates the number of cases associated with the label in Table 210 

3. A curved ‘flow’ between two components stands for the frequency of co-occurrence in the 211 

44 cases.  212 

 213 

 214 

Figure 2. Sankey chart of the semantic enrichment studies for BIM and CIM (2010 – 2019) 215 

 216 

3.1 The subject facilities  217 

As shown in Figure 2, the distributions of subject facilities were considerably uneven, where 218 

28 out of 44 studies focused on buildings. In BIM semantic enrichment, seventeen studies 219 

targeted buildings, six on indoor areas, and two on infrastructures. Note that some papers, e.g., 220 

Xue et al. (2018) and Hamid et al. (2018), involved both building and indoor furniture in their 221 

validations. In contrast, the subjects were more balanced for CIM. Twelve CIM cases targeted 222 

buildings, one on indoor areas, seven on city objects, four on environments, and three on 223 

infrastructure. The building, which is vital to the daily work and life of humankind in cities, is 224 

a critical meeting point between BIM and CIM.  225 

 226 

3.2 The baseline models and formats 227 

The baseline models, by definition, can be divided into two types: BIM and CIM. Each type 228 

had two formats, i.e., commercial and open, as shown in Figure 2. Overall, 27 cases were based 229 

on BIMs, while 17 on CIMs. For BIM semantic enrichment, all 22 cases used BIMs as the 230 

baseline models, 14 of which were commercial BIM formats and solutions (e.g., Autodesk 231 
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Revit). In comparison, open BIM formats and solutions, such as IFC and ISO 16739-1:2018, 232 

were adopted in 8 studies, slightly less than the commercial ones. Powerful and open—to a 233 

certain extent—APIs (Application Programming Interfaces) and online free development 234 

documents offered by commercial BIM software vendors can be good explanations (Xue et al., 235 

2019a). 236 

 237 

Unlike the BIM ones, only 5 out of 22 CIM cases were enriched above baseline BIMs (Irizarry 238 

et al. 2012; Borrmann et al., 2015; Amirebrahimi et al., 2015; Howell et al., 2017; Wang et al., 239 

2019), while the majority was based on CIMs. Over half (14 out of 22) of baseline models had 240 

open formats such as CityGML, while the remaining employed commercial formats and 241 

platforms such as ESRI ArcGIS. The open formats, such as CityGML or IFC, are known to 242 

have better transparency, operability, or scalability. For example, Deng et al. (2016) applied an 243 

instance-based method to generate mapping rules between CityGML and IFC to enable 244 

bidirectional semantic conversions. The commercial solutions to CIM, similar to those for BIM, 245 

were good at handling large-scale models and data. For instance, He et al. (2018) enriched 246 

geological semantics on top of a fully 3D city model in ArcGIS. 247 

 248 

3.3 The sources of new semantics 249 

The sources of new semantics consist of three major types: data, ontology, and existing 250 

BIM/CIM components. As shown in Table 3 and Figure 2, 17 out of 22 semantic enrichment 251 

cases for BIM extracted new semantics from various types of data. Among these, 6 studies 252 

involved vector data. For instance, Kim et al. (2012) and Xue et al. (2019a; 2019b) processed 253 

LiDAR points to produce semantically enriched BIMs. Also, 6 studies employed raster data. 254 

For example, Xue et al. (2018) used photos. Eastman et al. (2010), Zhang et al. (2014), Sacks 255 

et al. (2017), and Hamid et al. (2018) exploited tabular data. A few studies looked into the 256 

ontology sources (Lee et al., 2014; Belsky et al., 2016). Simeone et al. (2019) deployed an 257 

ontology-based system together with ad hoc rules as the source for enriching BIM; one study 258 

used both tabular data and ad hoc rules in semantic enrichment (Bloch et al., 2013). For the 259 

existing components, Irizarry et al. (2013) and Koo et al. (2019) reused BIM and CIM 260 

components.  261 

 262 

In 11 out of 22 CIM studies, data was the semantic source. For instance, Howell et al. (2017) 263 

applied tabular data, including water metering as the source; Wittner (2010) and Aleksandrov 264 

(2019) triangulated both raster and vector data. Ten studies applied ontologies to inferring new 265 

semantics (e.g., geological relationships utilized in He et al. [2018]). Various rules, as implicit 266 

or incomplete ontologies, were also popular as the semantic sources. For example, Löwner et 267 

al. (2013) studied 44 combinations of Geometric and Semantics Level of Detail 268 

(GLOD/SLOD). BIM components were adopted as the semantic source in six cases, where the 269 

most frequent research design trend was the open BIM to CIM conversion, such as from IFC 270 

to CityGML. For instance, Xu et al. (2014) and Kang et al. (2015) tested different ways for 271 
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importing IFC components into CIMs. A few cases channeled semantic elements from 272 

reference CIMs to generate new CIMs (Irizarry et al., 2012; Borrmann et al., 2015; Wang et 273 

al., 2019). Some studies integrated multiple types of semantic resources. For example, He et al. 274 

(2012) exploited both raster data (e.g., 2D cadastral maps) and ad hoc rules; EI-Mekawy (2011) 275 

used BIM components and formal ontology; Lee et al. (2018) involved raster data, tabular data, 276 

and BIM components simultaneously.  277 

 278 

3.4 The enrichment methods 279 

3.4.1 Building information model 280 

The 22 BIM cases covered all three types of enrichment methods, namely semantic reasoning, 281 

semantic registration, and semantic segmentation. A semantic reasoning method holds a set of 282 

fixed, usually predetermined processes without computational evolution or adaptations. More 283 

specifically, semantic reasoning methods included rule-based, formal ontology-based, and 284 

simulation ones. As exhibited in Table 3, semantic reasoning was the method for 11 of the BIM 285 

cases. An example was Belsky et al.’s (2016) SeeBIM engine which reasoned IFC models with 286 

five parts: parser, database, three-tiered structure inference rules, IFC writer, and rule-287 

processing engine; through the reasoning engine, missing precast joints, connections, and slab 288 

aggregations of a concrete parking garage were enriched automatically. 289 

 290 

The semantic segmentation consists of supervised machine-learning methods, which concluded 291 

hyper-models of classification from annotated training data sets. Six cases relied on semantic 292 

segmentation. For example, Bienvenido-Huertas et al. (2019) applied the J48 algorithm; Koo 293 

et al. (2019) applied support vector machines for semantic enrichment. Some segmentation 294 

studies involved multiple methods. For instance, Bloch (2018) compared supervised machine 295 

learning to reasoning methods in terms of feature collection and datasets; Bassier et al. (2016) 296 

applied both segmentation and reasoning methods. 297 

 298 

In total, 7 out of 22 BIM cases adopted semantic registration methods, which were evolutionary 299 

computations through multiple rounds (iterations) of searching in a trial-and-error fashion. Kim 300 

et al. (2012) employed the ICP method for matching 3D measurement data with existing BIM. 301 

Advanced evolutionary computation (EC) methods, such as the covariance matrix adaptation 302 

evolution strategy (CMA-ES) and Niching Migratory Multi-Swarm Optimization (NMMSO), 303 

were applied to process 2D and 3D raster data to semantically enriched as-built BIMs for 304 

complex indoor and outdoor scenes (Xue et al., 2018; 2019b). The key to semantic registration 305 

is a reward (or penalty) function, which can be the photo’s structural similarity (SSIM) metrics 306 

or root-mean-square errors (RMSE) between 3D data and models (Xue et al. 2019a).  307 

 308 

3.4.2 City Information Model 309 

The variety of enrichment methods for CIM was much lower. Semantic reasoning dominated 310 

the CIM studies. Many reasoning approaches were applied for mapping and converting IFC, 311 
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an open BIM standard, to CityGML. Example methods include semantic web technology (Zhao 312 

et al., 2019) and data interface modeling (Amirebrahimi et al., 2015). Enrichment to 313 

CityGML’s LoD standard was a topical research direction in CIM. Examples included Biljecki 314 

et al.’s (2016a; 2016b) 16 levels of LoDs and Löwner et al.’s (2013) significant extensions like 315 

GLOD, SLOD, and ALOD (appearance LoD). With the help of proprietary open APIs and free 316 

development documents available online, commercial formats and models were also used for 317 

semantic reasoning. For instance, He et al. (2018) enriched the expressions in geological 318 

relationships via a Diagrammer Geodata baseline model. Whether open or commercial, the key 319 

to enabling semantic reasoning was the interoperability issues between different formats and 320 

standards. Once the interoperability issues were solved, e.g., by mapping the ontologies or 321 

functional APIs, semantic reasoning would become a shortcut to reuse existing BIM and CIM 322 

resources to create CIMs at high LoD levels. Only one study (Irizarry et al., 2012) adopted the 323 

registration method. 324 

 325 

3.5 The enriched models and semantics 326 

In the 22 cases of enriched BIMs, twelve received both geometric and non-geometric new 327 

semantics; eight had new geometric semantics only, and two gained non-geometric semantics 328 

only. In contrast, ten out of 22 CIM cases had both types of new semantics; nine cases aimed 329 

at geometric semantics only; while only three cases, Irizarry et al. (2012), Mignard et al. (2014), 330 

and Xu et al. (2014) enriched non-geometric semantics to its CIM. To sum up, semantic 331 

enrichment studies for BIM weighed the non-geometric semantics more (14 out of 22) apart 332 

from the geometry (20 out of 22); CIM focused on the geometry (19 out of 22). The result was 333 

consistent with the guiding scales, i.e., LOD and LoD, to BIM and CIM. 334 

 335 

More interesting was about the subtypes of the physical facilities and their new semantics. As 336 

listed in Table 4, there were over 20 types of objects (e.g., furniture and room space) under the 337 

five major types of subject facilities. Their geometric attributes (e.g., area), non-geometric 338 

types (e.g., room type), identifiers (e.g., manufacturer), and relations (e.g., spatial relationship) 339 

were concluded from the literature. First, the objects listed under the building and city objects 340 

were the most diversified; meanwhile, these objects also had the most diversified geometric 341 

attributes, e.g., a building object can have a long list of attributes including height, distance, 342 

size, area, material, shape, dimension, volume, thickness, length, and proximity. The reason 343 

for the most listed objects under the building and city objects may be the diversification of 344 

related University majors and faculties. For example, the faculty of Architecture, the faculty of 345 

Civil Engineering, and the faculty of Geographic Information Technology have various studies 346 

on the semantics of buildings and cities in BIM and CIM. 347 

 348 

Table 4. List of geometric and non-geometric semantics for BIM and CIM in the literature 349 

Enriched 
model 

Subject 
facility 

Geometric Non-geometric 
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BIM Indoor 
facility 

Objects: furniture, room space, 
kitchen cabinetry 
 
Attribute: size, area, material, height 
 

Type: Room type, OmniClass number, 
model, style number, identity data 
 
Identifier: manufacturer, material 
product line, phasing, release date, cost, 
assembly code, assembly description 

BIM & 
CIM 

Building Objects: interior entities (e.g., door, wall, 
window, column, beam, covering, ceiling, 
footing, pile, plate, roof, slab, railing, 
ramp, stair, floor, precast concrete 
component are BIM objects defined inside 
building or as building parts), balconies, 
exterior entities (e.g., door, wall, window, 
roof, facade are CIM objects because they 
are part of the external environment of the 
building), building, parking garage 
 
Attributes: height, distance, size, area, 
material, shape, dimension, volume, 
thickness, length, proximity 

Type: functional classification 
 
Identifier: construction progress, 
degree of intervention, knowledge 
representation and management, cost 
 
Relation: spatial relation, logical 
relation 

Infra-
structure 

Objects: bridge, highway, tunnel 
 
Attribute: quantity, shape 
 

Type: design options 
 
Identifier: cost, environmental impact 
 
Relation: spatial relation 

CIM City 
objects 

Objects: exterior entities (e.g., in CIMs, 
the outer surfaces of windows, doors, 
roofs, and facades are regarded as part of 
the exterior of buildings), building, 
outbuilding shell, road, public garden, 
drainage system, structure elements, 
ground, streetlight, pedestrian path 
 
Attribute: length, shape, geometrical 
resolution, semantic depth, texture, 
distance 

Type: place type, component type, land 
title number 
 
Identifier: land use, land cover, 
building facilities information, campus 
water supply pipeline information, 
component information, coordinate 
 
Relation: spatial relation 

Environ-
ment 

Objects: water utility, vegetation, 
geological object 
 
Attribute: size, shape, texture 

Type: telemetry data, valve and pump 
states, smart metering data 
 
Identifier: pipe description, household 
description 
 
Relation: spatial relation, geological 
structural relation, geological 
phenomenon relation, geological object 
relation 

 350 

The most diversified identifiers were found in indoor facilities and city objects. Most subtypes 351 

of relations were found from the enrichment cases on the environment semantics. For example, 352 

the spatial relation in the geological environment gives the position of the rock in space relative 353 

to a reference object (e.g., the position of a tree). As another example, the logical relation in 354 

the geological environment gives the dependence between two rock layers. The items in Table 355 

4 reveal each subject facility’s potential in semantic enrichment for BIM and CIM, which can 356 
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partially explain why buildings were the most targeted facilities in literature. In the future, the 357 

indoor objects’ identification can become an emerging trend for BIM, while city objects’ 358 

potentials on the object types and the environment’s potential on the relations can lead to new 359 

explorations in the semantic enrichment for CIM. 360 

 361 

3.6 The applications 362 

Applications and the values embedded specify the target semantics and initiate enrichment 363 

processes. In BIM semantic enrichment studies, 15 were applied in pre-operation phases (e.g., 364 

planning and construction), four in operation and maintenance, one in energy, while two were 365 

unspecified. Most novel value-added applications of BIMs lie in the pre-operation phases of 366 

buildings. The distribution reflects the scope of BIM studies and the interest of BIM researchers 367 

and practitioners. In comparison, applications of CIM semantic enrichment showed more 368 

balanced and diverse fields. Nine CIM cases were applied in the urban environment (e.g., urban 369 

planning), seven in pre-operation, four in operation and maintenance, one in energy, while one 370 

paper did not specify its application. The diverse applications echo the diverse sources of CIM 371 

semantics, as shown in Table 3. 372 

 373 

4. The trends and prospects of semantic enrichment of BIM and CIM  374 

Figure 3 shows the stacked bar charts of the yearly semantic enrichment cases for BIM and 375 

CIM from different perspectives. First, Figure 3a shows that in BIM studies, there has been a 376 

surge of indoor facility studies since 2018, while the study of buildings has increased relatively 377 

steadily since 2010. In comparison, the CIM cases had more diversified and balanced subject 378 

facilities. For example, in 2019, the four cases covered four different types of subject facilities, 379 

while the environment was the latest emerged subject (in 2016). Virtual reality and augmented 380 

reality (VR/AR), which had recently become a household term, was one enabler of indoor 381 

facility studies (Chen and Xue, 2011). For instance, Google’s Project Tango was a pioneer 382 

project for household VR/AR, from which two smartphone models were mass-produced. One 383 

was Lenovo Phab 2 Pro, released in December 2016, and the other was Asus Zenfone AR, 384 

announced in 2017. Although Tango was not a successful project in terms of business, the new 385 

VR/AR sensor data directly inspired a few indoor facility studies as semantic sources: e.g., Xue 386 

(2019a). In 2020, new mainstream smartphone models have Apple’s AR-Kit or Google’s 387 

ARCore installed; furthermore, VR/AR is growing extensively. For example, IDC (2019) 388 

predicted that global VR/AR spending would have a five-year compound annual growth rate 389 

(CAGR) of 77.0%. Thus, semantic enrichment of indoor facilities should gain new momentum 390 

in the future.  391 
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 392 

Figure 3. Stacked bar charts of yearly published semantic enrichment cases for BIM and CIM 393 

 394 

Figure 3b shows that since 2018, commercial baseline models have been increasingly used in 395 

BIM cases. During the same period, only a few CIM cases adopted commercial baseline models. 396 

For the BIM cases, one reason was the poor efficacy of the open BIM standard— IFC. For 397 
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example, Zhiliang et al. (2020) pointed out that the information corresponding to the 398 

established property sets can only be read, but its semantics cannot be automatically identified 399 

in the current IFC. De Gaetani (2020) recognized faults when exchanging sample IFC BIM 400 

models and related Gantt charts. Besides, information redundancy, such as the randomized 401 

sequential identifiers (#-Ids) and complicated cross-referencing relation systems, makes it 402 

difficult to extract and, particularly, to enrich BIM information efficiently using IFC 403 

(Borrmann et al. 2018; Xue and Lu, 2020). In comparison, CIM semantic enrichment studies 404 

used to be benefited from OGC’s long list of open standards covering a wide spectrum from 405 

data to model to tool. However, a few recent semantic enrichment studies for CIM were 406 

benefited from commercial but powerful APIs, e.g., He et al. (2018), or the CIM-BIM 407 

integration, e.g., Lee et al. (2018) and Zhao et al. (2019). Considering the development of IFC 408 

and recent collaborations between BIM and CIM software giants, we would likely see more 409 

semantic enrichment studies utilizing commercial standards and solutions in the next five years 410 

for BIM and CIM. In the longer run, open standards have the ground to continue its prevalence 411 

for CIM, as well as for BIM in case the APIs to IFC such as the IfcOpenShell project (Krijnen, 412 

2011) are competitive against commercial platforms. 413 

 414 

For both BIM and CIM, all three types, i.e., data, model, and ontology, have been involved as 415 

sources of new semantics, as shown in Figure 3c. In the BIM cases, data was the most 416 

frequently used, while existing components were the least. In contrast, situations were the 417 

opposite for CIM – data was the least frequent while existing components and ontologies were 418 

the most. Availability of city-scale measurement data should not be among the reasons because 419 

accurate data sets such as satellite photos, radar images, and 3D LiDAR point clouds became 420 

much available and affordable in the recent decade. However, the availability of effective 421 

algorithms and methods to pre-process and process the city-scale data sets can be a cause. For 422 

example, the 2015 Dublin LiDAR was an open-source data set consisting of 1.4 billion 3D 423 

points; it wasn’t until 2019 that Zolanvari et al. published a pre-processed data set with a sheer 424 

18.6% point cloud with semantic annotations. Nevertheless, researchers on CIM can refer to 425 

up-to-date data processing methods for BIM (e.g., deep learning, statistical modeling, model-426 

based down-sampling, and optimization algorithms) to handle city-scale data. Therefore, we 427 

are open to seeing more data-driven semantic enrichment studies for CIM in the future. For 428 

BIM, components and model is a promising source of new semantics to take advantage of the 429 

CIM-BIM integration.  430 

 431 

The three types of methods were roughly equally employed for BIM semantic enrichment in 432 

terms of frequency, while semantic segmentation methods appeared in the second half of the 433 

review period. The situation for CIM was different, where most cases were conducted through 434 

semantic reasoning methods. The major reason should be that the rule of ontology-based 435 

reasoning is the most efficient (i.e., least time cost) when data grows to the city scale. In 436 

comparison, semantic registration methods for BIM applied a considerable number of trial-437 
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and-error tests to match the indoor facility to correct 3D models; and semantic segmentation 438 

methods require a large number of training examples (e.g., Zolanvari et al. 2019). However, 439 

we are optimistic to see that the research communities for BIM and CIM can learn effective 440 

and efficient technologies from each other, along with the emerging trend of crossing the 441 

disciplinary boundary. Besides, new technologies, such as big data analytics, which can 442 

discover new relationships from complex urban big data, are also potential game-changers to 443 

process city-scale data sets (Lu et al., 2018). Therefore, the semantic enrichment methods for 444 

CIM are very likely to be more efficient and diversified.  445 

 446 

A shared value-added application can be a strong driver for promoting and integrating the 447 

complementary semantics in BIM and CIM. For example, Figure 3e shows that both started to 448 

impact the operation and maintenance phase in 2014. However, there still are some obstacles:  449 

• Different standard formats (Liu et al., 2017), for example, the IFC schemas are not fully 450 

compatible with the definitions in CityGML; 451 

• Lack of legal protection for intellectual property rights (Ku and Taiebat, 2011), for 452 

example, authorship, readership, and ownership of semantics within the model; 453 

• Funds and time costs required for integration (Suermann and Issa, 2009), for example, 454 

employing modelers and consultants; 455 

• Unsuitable external environmental conditions (Azhar et al., 2012), for example, lack of 456 

professional interactivity and external motivations; 457 

• Insufficient management (Eastman et al., 2011), for example, lack of a well-established 458 

workflow and immature dispute resolution; 459 

• Different spatial scale (Song et al., 2017), for example, data and information with 460 

multiple spatial scales; and 461 

• Different user focus (Liu et al., 2017), for example, BIM users used to focus on 462 

construction projects, while CIM users may focus on spatial analysis of outdoor 463 

environments. 464 

In the past, much focus was on resolving technical difficulties, while management, 465 

environmental and legal obstacles received less attention. Therefore, researchers should realize 466 

that openness and collaboration are the keys to favorably integrating BIM and CIM. 467 

Application-driven semantic enrichment, frequent communication, and government policies 468 

are also essential for successful integrations. For example, recent smart buildings and city 469 

initiatives require people in these two fields to collaborate to develop more semantic 470 

enrichment applications (e.g., energy). It would be a misconception to assume that enriched 471 

models will be automatically implemented in real life. Instead, realizing semantic enrichment 472 

applications requires positive attitudes from people in different sectors. This is the only way 473 

the nexus between the research and practice of semantic enrichment will spiral upward.  474 

 475 
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In short, this research developed a conceptual model consisting of six components to revisit the 476 

existing semantic enrichment studies in BIM and CIM for outlining the trends and prospects. 477 

Value-added applications and research gaps brought opportunities for future investigations. 478 

Firstly, BIM semantic enrichment starting from CIM was rare in the past, and future research 479 

breakthroughs can be extended from this perspective. Secondly, compared with other subject 480 

facilities, researchers can also pay attention to indoor facilities. In the era of big data, people 481 

can generate and access more and more indoor data, which can involve humans in the loop 482 

through the semantics of indoor behaviors and facility usages. Thirdly, with the rapid 483 

development of data processing algorithms, future research should attempt to use city-scale 484 

data sets as a source of new semantics to help develop smart buildings and cities and manage 485 

the life cycle of infrastructures. Last, but not least, research using semantic reasoning is 486 

relatively mature and saturated, and future research can tackle more semantic registration or 487 

segmentation methods.  488 

 489 

The findings of this study also have practical implications. Although semantic enrichment is 490 

relatively successful in the pre-operation phase, there is still a lack of systematic considerations 491 

to consolidate isolated applications in different phases and departments. One reason is that user 492 

interfaces are isolated at different phases of the construction life cycle (e.g., design, 493 

construction, and post-maintenance). Another possible reason is that different government 494 

departments hold CIM datasets. For example, in Hong Kong, the Land Department holds 3D 495 

digital maps, while building semantics are separately managed by the Building Department, 496 

Housing Department, Planning Department, and Home Affairs Department. Therefore, in 497 

addition to technical obstacles, there are also institutional barriers. Furthermore, neither private 498 

companies nor the public can access the datasets. Therefore, common urban semantic platforms, 499 

such as Queriocity (Lopez et al., 2012) and Smart City Platform (ASTRI, 2019), should aim to 500 

solve transparency and accessibility issues. Researchers interested in semantic enrichment can 501 

also pay attention to emerging theoretical challenges from common urban semantic platforms. 502 

 503 

5. Conclusions 504 

Semantic enrichment is a process that adds semantic information to a building information 505 

model (BIM) or a city information model (CIM) to enable applications pertinent to construction 506 

management, geoinformatics, and urban planning. However, the process of harnessing 507 

semantic enrichment to improve the existing BIM and CIM seems a conundrum. This paper 508 

proposes a conceptual model representing the series of generic semantic enrichment processes 509 

for both BIM and CIM. In the model, a semantic enrichment study first targets a subject facility, 510 

then adopts a baseline BIM or CIM, locates sources of new semantics, distills the new 511 

semantics using various methods, which results in an enriched BIM or CIM by appending the 512 

newly distilled semantics, and finally realizes applications.  The proposed model was applied 513 

to 44 empirical studies in the literature.  514 

 515 
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A comparative analysis of semantic enrichment in BIM and CIM showed considerable 516 

differences in terms of scopes, terminologies, methodologies, and scales. For example, a recent 517 

study on BIM semantics focused more on buildings and indoors, while CIM research covered 518 

buildings, infrastructure, urban objects, and environments. The future research will probably 519 

gain opportunities from the penetrations of remote sensing devices (such as VR/AR 520 

smartphone), intelligent data processing algorithms, BIM and CIM software platforms, and 521 

other emerging technologies such as big data analytics. Since 2018, commercial platforms that 522 

serve as baseline models for semantic enrichment in BIM and CIM have become common in 523 

literature. There are BIM cases since open BIM standard IFC is not effective. CIM semantic 524 

enrichment studies used to benefit from OGC’s long list of open standards; however, a few 525 

recent CIM studies benefited from commercial but powerful APIs. When it comes to the source 526 

of new semantics for BIM cases, data was the most frequently used, while existing components 527 

were the least. In contrast, situations were the opposite for CIM. Notably, the enrichment 528 

methods were rather different, too. Semantic reasoning, semantic registration, and semantic 529 

segmentation were roughly equally employed for BIM semantic enrichment in terms of 530 

frequency, while most CIM cases were conducted through semantic reasoning methods. BIM 531 

semantic enrichment was mainly applied in pre-operation phases, while CIM semantic 532 

enrichment was mainly applied in urban environments. However, recent trends indicated that 533 

BIM and CIM have similar applications in the operation and maintenance phase. 534 

 535 

The study is the first-ever one of its kind to examine the niche area of semantic enrichment. 536 

Moreover, the study combs the development in fields and helps readers understand the changes 537 

in semantic enrichment in the past ten years and its prospects or future research. Another 538 

contribution of this research is the conceptual model of semantic enrichment comprising six 539 

components that explain the rationale of semantic enrichment from a data processing 540 

perspective. By triangulating the conceptual model with the historical data from the niche of 541 

semantic enrichment research, this study summarized the research findings, based on which 542 

future development could proceed on a more streamlined footing. 543 

 544 

Although the study in this paper has many merits, it also has the following limitations. Firstly, 545 

manual screening and coding work could inevitably present subjectivity. The accuracy can be 546 

improved by discovering more related publications in future work. Secondly, the selection and 547 

discussion of the semantic enrichment studies were specified to the empirical city and building 548 

cases in the scholarly publications in the urban-related fields. Practitioners might consider real-549 

life demands and conditions as well. A systematic recommendation of semantic enrichment 550 

methods distilled from the best practices in the literature should be included in future work. 551 

Amidst the general trend of enhancing semantic enrichment, researchers and practitioners alike 552 

are encouraged to think out of the box, e.g., where are the optimal ‘sweet points’ of BIM and 553 

CIM between the high LOD/LoD semantics and various costs (e.g., funds, privacy, social 554 
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inequality, and human-machine conflict), as it is certainly not the higher the LOD/LoD, the 555 

better.  556 
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