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Abstract 
As-built BIM represents a facility as actually constructed or as it currently exists. The 
information, such as actual geometry, current functions, and real topology, in as-built BIM is 
vital to construction research and smart city development. Two complementary classes of 
methods, i.e., digital 3D reconstruction and semantic enrichment, were applied, yet to 5 

consolidate, for as-built BIM creation in the literature. This paper presents a general 
framework that formulates the two classes as a joint effort. Two illustrative cases, one on 
outdoor rooftops and the other on indoor furniture, were employed to explain how the two 
streams of approaches can co-create as-built BIMs. Two future directions, i.e., digital twin 
building and blockchain BIM, are discussed. As a result, the semantically rich as-built BIM 10 

forges a shared construction information hub for smarter applications. 
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1. Introduction 15 

A building information model (BIM), also known as building information modeling, is the 
digital representation of physical and functional characteristics of a facility, according to the 
definition by the National BIM Standard of United States (NIBS, 2015). BIM acts as a shared 
information resource and knowledge base regarding the facility. Based on the information 
and knowledge shared, construction stakeholders are thereby able to have a reliable basis for 20 

decisions making (NIBS, 2015).  

 

Information is the keyword in BIM (Lu, Lai, & Tse, 2019). The as-built information is 
particularly vital to building research and smart city applications. Generally, there are two 
types of information (also known as semantics) contained in a BIM (Eastman, Teicholz, 25 

Sacks, & Liston, 2011; Belsky, Sacks, & Brilakis, 2016; Xue, Lu, & Chen, 2018).  
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1) Regarding an individual construction component, e.g.: 
a. Geometric information, such as size, position, shape and textures; and 
b. Non-geometric information, such as type, specifications of material, and 

meanings of functions. 30 

2) Regarding relationships between components, such as dependency, topology, and 
joints. 

 

A BIM can be “blind” and “deaf” if it does not reflect the real situations of a construction 
(Chen, Lu, Peng, Rowlinson, & Huang, 2015). Furthermore, some critical information, such 35 

as actual building geometries, current functions, and real topology of facilities, are only 
embodied in as-built BIMs (Xiong, Adan, Akinci, & Huber, 2013; Pătrăucean, et al., 2015). 
Semantically rich as-built BIMs can enable many value-added applications, including facility 
management, building retrofitting and renovation, energy consumption simulation, indoor 
positioning, and augmented reality (AR). Otherwise, the inevitable design changes, 40 

inadvertent deviations or errors, and renovation work make an ‘as-designed’ BIM 
inappropriate for various applications. Only by reenergizing a BIM with the as-built (or as-is) 
information of actual and current situations, one can update the as-designed BIM to as-built 
BIM to reflect and represent the real facility (Pătrăucean, et al., 2015).  

 45 

However, the wide adoption of BIM in the architectural, engineering and construction 
(AECO) industry was very recent. Most constructions around the world do not have BIM 
representations; needless to say about the as-built information in BIM. In summary, there is a 
large gap between the need and the availability of as-built BIM for many existing 
constructions. An as-built BIM modeling is manually doable in a small scale, for example, in 50 

as-built modeling of one heritage building (Bruno, De Fino, & Fatiguso, 2018). Regarding 
the extreme number of buildings and irregular geometries in a larger context, e.g., a city, 
manual work is extremely tedious, time-consuming, and costly (Xue et al. 2020b). 
Researchers have thus endeavored to develop various automated (i.e., automatic or semi-
automatic) as-built modeling approaches over the past decade (Xiong, Adan, Akinci, & 55 

Huber, 2013).  

 

In as-built BIM creation, no matter manual or automated, there are two groups of methods, 
i.e., 3D reconstruction and semantic enrichment. The two groups must work together to 
update all the as-built information, i.e., geometric, non-geometric individual, and relational. 60 

For example, if the geometric model is not available, 3D reconstruction can create the as-built 
geometry from measurement data. Otherwise, if the 3D geometric model is ready to reuse, 
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e.g., from an as-designed BIM or reconstructed 3D model, semantic enrichment can update it 
with the latest information (Xue et al. 2019b).  

 65 

This chapter aims to present a general framework of as-built BIM creation for BIM 
automation and applications in the construction industry. The next section summarizes related 
work. Section 3 describes the framework. Two cases, including one outdoor case of rooftop 
elements and the other of indoor furniture, are presented in Sections 4 and 5 to demonstrate 
how the 3D reconstruction and semantic enrichment work collaboratively. In addition, the 70 

recent evolving trend of as-built BIM to a digital twin is discussed and a conclusion is drawn.  

2. Related Work 

2.1 As-built BIM  

Every construction has a lifecycle, also a learning cycle. Along the whole cycle, BIM, as the 
shared construction information hub, goes through as-required, as-designed, as-planned, as-75 

built (or “as-is”), as-altered, and as-demolished versions (Xue, Lu, & Chen, 2018). The as-
built BIM mainly covers the building, use, and maintenance phases. That is, as-built BIM is 
also the longest persistent version of BIM for a facility. The generation of such BIMs has 
therefore attracted the interest of practitioners and academics in the architecture, engineering, 
construction, and operations (AECO) industry, urban geology, robotics, and autonomous 80 

vehicle. 

 

2.2 3D Reconstruction of Buildings 

The geometric data sources of buildings are becoming accurate, detailed, diversified, and—
perhaps most importantly—affordable. In tradition, taped-measured lengths, e.g., height, and 85 

depth, used to be the main forms of 3D geometry. The 2D imagery was also an important 
geometric data source (Ellenberg, Kontsos, Moon, & Bartoli, 2016). In recent one or two 
decades, more and more types of 3D surveying digital measurements have been adopted in 
the AECO industry. Examples are laser scanning by total station, photogrammetry (or 
structure from motion) by drones, RGBD images by depth camera, mobile scanning of 90 

simultaneous localization and mapping (SLAM) by AR smartphones and vehicles (Wang & 
Kim, 2019; Xu, et al., 2020).  

 

Considerable progress has also been made in enhancing data preparations (e.g., point cloud 
registration), developing preprocessing algorithms, and exploring model generation methods 95 

(Hamledari, McCabe, & Davari, 2017; Sacks, et al., 2017).These efforts responded to the 
challenges in the geometric data sources. For example, point clouds and imagery primarily 
represent the surface geometry, which makes it difficult to reveal the volumetric components 
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and discover non-geometric semantics from the surfaces. In addition, point clouds and 
imagery are even limited in collecting all the surfaces—sometimes only one side with big and 100 

small holes—of a facility. 

 

 ‘Semantic segmentation’ refers to a process of partitioning each pixel to a semantic label 
(Shamir, 2008), which has been successfully applied in object surfaces extraction and BIM 
components creation (Barazzetti, 2016; Babacan, Chen, & Sohn, 2017). There are four broad 105 

classifications of the segmentation-based 3D reconstruction methods: a priori rules, 
geometric shape descriptors, machine learning classifiers, and a composition of numerous 
BIM components. Employing the regularity of individual component is a priori rule for BIM 
object recognition, such as the prism boundary reconstruction of indoor space (Valero, Adán, 
& Cerrada, 2012). Performing the shape matching by extracting the characteristic geometric 110 

features as an explicit shape descriptor, such as the Laplace-Beltrami filtering (Wang, et al., 
2018). The machine learning classifiers has also been applied in Babacan et al. (2017)’s 
research on convolutional neural network. Many studies have adopted a combination of 
multiple segmentation methods for multiple BIM components, such as Nguyen and Choi 
(2018) detached planar primitives before RANSAC fitting of cylindrical pipe systems. 115 

Notwithstanding that the reconstruction of simple shaped and regularly shaped objects has 
been successfully utilized through these semantic segmentation-based methods, there still 
exists disadvantages: substandard performance for complex shaped objects (e.g., furniture) 
(Wang, et al., 2018); reliance on a priori rules or labeled data set for models training; and 
failure to reuse online open BIM resources (Xue, Lu, & Chen, 2018). 120 

 

To solve defects when dealing with complex-shaped objects, the segmentation-free methods 
are thus proposed. Xue et al. (2018) propositioned the semantic registration, a method based 
on nonlinear optimization for BIM reconstruction. Employing overall error minimization or 
similarity maximization between the reconstructed BIM and the measured data, a single BIM 125 

object will be reassembled into a complete model, thereby combining them with semantic 
information from reliable sources (Xue et al. 2019b). Thus far, semantic registration has been 
verified on 2D photos and 3D point clouds of indoor and outdoor scenes. Hidaka et al. (2018) 
developed another noteworthy method, in which the similar areas of template CAD model 
were first adaptively located, and then the iterative closest point (ICP) algorithm was 130 

employed to finely register the CAD templates. Besides, the mechanical, electrical and 
plumbing (MEP) systems from clashes can be reorganized through simulated annealing from 
Hsua and Wua (2019)’s outcomes. Although the abovementioned first three weaknesses of 
semantic segmentation have been addressed by segmentation-free methods, it still presents 
two limitations, i.e., low efficiency from unnecessary re-exploration of the problem search 135 

space and the proneness to input errors Xue et al. (2018; 2019b) and Hidaka et al. (2018).  
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2.3 Semantic Enrichment to Buildings 

Semantic enrichment is a way of automatic or semiautomatic adding of meaningful 
information to an existing BIM (or 3D building) model, instead of creating a new model from 140 

scratches (Jardim-Goncalves, Sarraipa, Agostinho, & Panetto, 2011; Belsky, Sacks, & 
Brilakis, 2016). Instead of creating a new BIM from scratches, one can apply semantic 
enrichment to use and reuse the existing 3D models of a facility. One main reason is that the 
geometry of a facility is usually rigid, as a whole or in most parts, for reusing. Another reason 
lies in the multi-disciplinary collaboration in obtaining and understanding the as-built 145 

conditions of a facility. Semantic enrichment, as a way of inter-disciplinary interoperability 
of information, showed strengths in other domains, such as database management systems, 
manufacturing, and semantic web (Lacasta, Nogueras-Iso, Falquet, Teller, & Zarazaga-Soria, 
2013; Liao, Lezoche, Panetto, & Boudjlida, 2016). Furthermore, cities and buildings are 
evolving over time. A BIM deems to be updated from time to time, otherwise it may become 150 

“blind” and “deaf.” Apart from the moving city objects, the facilities which seem to have 
steady geometries require their non-geometric information such as functions and property 
valuations to be updated from time to time (Chen, Lu, Peng, Rowlinson, & Huang, 2015). 

 

Semantic enrichment usually combines and correlates the measurement data and a priori 155 

semantic model. Yet, some studies relied more on the measurement data. For example, 
Koppula et al. (2011) predicted the semantic labels of indoor points based on edge potentials. 
Lin et al. (2013) classified the LiDAR point clouds into patches of geometric primitives, then 
reconstructed connected graphs of patches for building model enrichment such as the hole 
filling and surface enclosure. Yang et al. (2020) extracted the 3D dimensions from CAD 160 

drawings for semi-automatic BIM enrichment. Deep learning models that predict semantic 
labels from 3D point clouds, such as types of building components in Chen et al. (2019) and 
Pierdicca et al. (2020), also became popular recently. 

 

More research applied and adapted a priori semantic models to describe the measurement 165 

data, like design patterns, rules, and domain knowledge. For instance, Kim et al. (2013) 
registered as-built measurement point cloud to an as-planned BIM to update the schedule. Liu 
and Wu (2016) presented a rule-based method to reconstruct historical buildings with 
different architectural styles. Chen et al. (2018) applied a fundamental regularization rule to 
rooftop elements from noisy LiDAR data. Other examples included the topological rule 170 

processing in the SeeBIM system (Sacks, et al., 2017) and a knowledge-based system for 
resolving design clashes in BIMs (Hsu, Chang, Chen, & Wu, 2020).  
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3. A General Framework of Creating As-built BIM  

Figure 1 shows a general framework of creating and applying an as-built BIM. As shown in 175 

Figure 1, the conceptual model includes five interrelated components, namely, (1) The target 
facility, (2) Baseline model, (3) Sources of new semantics, (4) Semantic enrichment method, 
and (5) Enriched model. For a given facility, semantic enrichment is the process that extracts 
new semantics from the new semantics sources and adds them to the baseline BIM or CIM so 
that the updated model has a richer digital representation of the facility.  180 

 

 

Figure 1. A general framework of as-built BIM creation 

 

The target facility is the primary subject of an as-built BIM. The facility also plays the roles 185 

of the ultimate information source and value-added application sink. The types of facilities 
may include: (i) indoor objects and systems like furniture and space network, (ii) buildings, 
(iii) civil infrastructures, and (iv) other city objects. 

 

The data sources in Figure 1 consist of two types, i.e., data of geometry and semantics data. 190 

Data of as-is geometry, which serves the purpose of 3D reconstruction mainly, can be 
collected, registered, integrated, and resampled from laser scanning, photogrammetry, or tape 
measurements (Baltsavias, 1999; Jung, et al., 2014). In contrast, semantics data enables 
semantic enrichment to non-geometric and relational information to the as-built BIM, while 
the data sources include non-geometric measurements, such as cement temperature from 195 

infrared sensors and laser reflection from LiDAR, and existing models from designers and 
manufacturers (Xue, Lu, Tan, & Chen, 2019c). Sometimes, the two data sources are 
intertwined. For example, the 3D coordinate (x, y, z) in a LiDAR point cloud is the geometric 



7 
 

data, while the laser reflectance denoting how much percentage of laser beams returned is a 
column of data of semantics. 200 

 

The 3D reconstruction methods can create 3D surfaces and volumetric BIM components for a 
facility based on the geometric data sets. Digital 3D construction, focusing on creating the 
geometric form from 2D plans or point data, has a deep root in Computer-aided Design 
(CAD) and Computer Vision and Pattern Recognition (CV/PR) since the 1980s. The result is 205 

as a geometric 3D building model, sometimes a volumetric BIM. The geometric model or 
BIM can enable several smart applications, e.g., solar power potential, fresh air ventilation, 
and sky view simulations. 

 

Semantic enrichment, in comparison, originated in database management systems (DBMS) 210 

and emphasizes the non-geometric functions and relational attributes in BIM. For example, 
the accuracy of building energy model and urban heat island simulations can be improved 
with the building surface materials predicted from laser reflectance in the LiDAR point 
clouds and colors in 2D photographs. Furthermore, 3D reconstruction processes and semantic 
enrichment are expected to run periodically to maintain the as-is geometric conditions and 215 

current functions in an as-built BIM. 

 

4 An Outdoor Case of Rooftop Elements 

4.1 A Case at the University of Hong Kong 

The study area, in this case, was a squared area around the University of Hong Kong (HKU) 220 

Main Campus, about 0.3 km2 in the Central Western District, Hong Kong. As shown in 
Figure 2, the LiDAR data was collected by the Civil Engineering and Development 
Department (CEDD) of the Hong Kong SAR Government (CEDD, 2015). The intensity in 
the LiDAR data was measured by an airborne Optech 3100 LidAR sensor. The point density 
was about 4.0 points per m2. The study area consisted of various urban landscapes, including 225 

high-density urban blocks. 
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Figure 2. The study area. (a) The CEDD (2015) LiDAR data, (b) topographic map and LoD1 
(2.5D) objects (Source: authors; Chen et al. (2018)) 230 

 

Both 3D reconstruction and semantic enrichment tests were conducted to the rooftop 
elements in the test case. Roofs usually constitute 20~25% urban surfaces in typical 
metropolises (Rose, Akbari, & Taha, 2003). Rooftop albedo that measures how much solar 
radiation is reflected (other than absorbed) by roof coatings leads to a negative radiative 235 

forcing. At a worldwide level, high-albedo roofs can offset billions of tons of CO₂ emissions 
as well as save billions of dollars of energy bills every year (Akbari, Menon, & Rosenfeld, 
2009). Therefore, some governments, such as the California Energy Commission (2005), 
have required all new or retrofitted roofs to be white or reflective. 
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 240 

Apart from the LiDAR point cloud, an official topographic map was also used in the tests. 
The map, as shown in Figure 2b, was a 1:1000 Geodatabase (GDB) format digital map from 
the Lands Department (LD) of HKSAR. The 2D city objects were described in the Hong 
Kong 1980 Grid system (EPSG:2326), which mean all the x, y, z, values were in meter. The 
map contains 2D city objects such as buildings, land cover, and transportation. The 2D 245 

buildings in Figure 2b were highlighted. The building footprints and heights were used in this 
case. 

 

4.2 3D Reconstruction 

The 3D reconstruction is completed by an integrated approach named multi-Source 250 

recTification of gEometric Primitives (mSTEP), presented in Chen et al. (2018). The mSTEP 
consists of four phases in as-built modeling. The first phase is 2.5D building polygons 
creation was visualized in ESRI ArcScene, as shown in Figure 2b. The geometric data source 
was the building footprints in the official topographic map. The results were Level of Details 
1 (LoD1) building blocks in terms of the CityGML standard.  255 

 

The second step aims to extract considerable (e.g., with > 1 m diameter) rooftop elements 
from the rooftop point clouds. First, the point cloud of each building was segmented. The 
boundary for segmentation was extended from the building footprint, because some buildings 
have slightly larger roof area than its foot. An iterated RANSAC (Schnabel, Wahl, & Klein, 260 

2007) was adopted for detecting geometric primitives from LiDAR point cloud of the 
building rooftops. It is decided to set the minimum number of support points of RANSAC to 
10 (i.e., element top area no less than 2.5 m2), maximum distance to primitive to 0.02 m, and 
sampling resolution to 1.0. 

 265 

The third step detects the guiding directions (lines) from the building footprints. The 
perpendicular and parallel lines of the long edges in a footprint can indicate the major axes in 
the building design. Regular-shaped footprints and irregular-shaped ones can drive the 
guiding directions. As a result, the 3D reconstruction took advantage of both as-built 
measurement of LiDAR point clouds and as-designed building footprints. Figure 3 shows 270 

how the mSTEP method could achieve the goal. The mSTEP was tested on a personal 
notebook with 2.6GHz Quad-core CPU, 16 GB RAM, and a 64-bit Microsoft Windows 10 
operating system. First LoD2 as-built BIM is developed by aligning the rooftop elements to 
the guiding directions. Particularly, two object rectification rules were employed, as shown in 
Figure 3ab. In tests, the maximum normal deviations of α and β were set to 25°.  275 
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Figure 3f shows eight examples of reconstructed building models involving various 
architectural features, for examples, an Edwardian Baroque-style building (ID: 11**374) 
including a central clock tower and corner turrets on the Main Campus of HKU; a high-rise 
residential building (ID: 11**486) with a pyramidal roof, surrounded by several irregular 280 

roof objects; a food wholesale market (ID: 11**535) with some parallel strips as well as box-
shaped air conditioners on the roof; and a convex-shaped roofed building (ID: 11**845). It 
can be further noticed that no manual post-modification is required for those reconstructed 
models. It can be seen that the models reaching LoD2 retain more details than simple 
"boxes", and achieve acceptable criteria. 285 

 

 

Figure 3. Reconstruction and rectification of rooftop objects according to the guiding lines. 
(a) First vertical adjustment rule; (b) second horizontal adjustment rule; (c) LiDAR point 

clouds; (d) geometric primitives; (e) output; (f) Examples of the reconstructed LoD2 BIMs 290 

and the ground truth photographs. (Source: authors; Chen et al., (2018)) 
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Table 1 compares mSTEP and Javanmardi et al.’s (2015) method using three metrics: (i) 
root-mean-squared error (RMSE) between the associated points and the BIM, (ii) percentage 
of segmented points (associated with as-built BIM), and (iii) computational time. Both 295 

methods reconstructed accurate geometry, in terms of RMSE, for segmenting the point 
clouds; while mSTEP was more accurate (average RMSE = 0.085 m). Furthermore, mSTEP 
segmented more points (81.3% on average) to support as-built BIM creation. However, 
Javanmardi et al.’s (2015) method was faster. The comparison results show that the 3D 
reconstruction was successful and competitive against other methods for building rooftops. 300 

 

 

Table 1. Comparison of mSTEP’s results (best values in bold) 

No. Number of 
points 

mSTEP  Javanmardi et al. (2015)† 
Time 
(s) 

Segmented 
(%)# 

RMSE 
(m)* 

 Time 
(s) 

Segmented 
(%)# 

RMSE 
(m)* 

1 270 0.03 75.2 0.114  0.02 63.1 0.119 
2 372 0.03 77.7 0.048  0.01 58.7 0.157 
3 620 0.40 87.6 0.065  0.02 84.7 0.098 
4 2,491 0.16 48.6 0.196  0.05 31.6 0.199 
5 2,682 0.09 90.0 0.057  0.03 60.2 0.049 
6 7,212 0.23 91.1 0.067  0.04 26.4 0.067 
7 8,987 0.26 85.1 0.065  0.09 18.8 0.097 
8 24,878 2.23 86.3 0.068  0.13 66.2 0.163 
9 29,506 0.47 90.1 0.088  0.21 71.1 0.230 

Average 0.48 81.3 0.085  0.07 53.4 0.131 
†: The paprameter β of Javanmardi et al. (2015)’s method was set to 0.5m as the average 
point distance; 
#: Percentage of points that are segmented to support the detection of geometric primitives. 
*: Root mean square error of the distances of segmented points to their corresponding 
primitives. 

 

4.3 Semantic Enrichment 305 

4.3.1 Rooftop Albedos 
Two data-driven applications of semantic enrichment were tested on the basis of the LoD2 
as-built BIMs. To monitor rooftop albedos and utilize them in simulations, Xue et al. (2019c) 
created a semantic as-built city information model (CIM) of rooftop albedos in the target 
area. The whole modeling process was straightforward. First, the geometric models of 1,087 310 

blocks of buildings and 1,288 rooftop elements on top of them were created using the method 
in Chen et al. (2018). Then, the values of albedos were estimated using a linear model of the 
near-infrared laser reflectance, according to the validation in Levinson et al. (2014). The 
enriched rooftop albedos are vital to various urban sustainability topics such as heat island, 
local climate, green roof, and urban morphology (Santamouris, 2014; Stewart, Oke, & 315 

Krayenhoff, 2014; Baniassadi, Heusinger, & Sailor, 2018). The enriched as-built model 
converted into GeoJSON formats and visualized on a web 3D library OSMBuildings (version 
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3.0.1, https://github.com/OSMBuildings/OSMBuildings). Figure 4a shows the visualized 
albedo models of the study area. 

 320 

Beside of the albedo, Xue et al. (2019c) associated each rooftop model with the topographical 
map of Hong Kong (in HKGS1980 coordinate system) and Open Street Map (in WGS1984). 
As a result, more semantic properties can be enriched to the model of the building. Figure 4b 
shows the Knowles Building, HKU, in which the offices of the authors reside, in the web 
visualization system. Apart from the geometric dimensions, one can read the more properties 325 

from the mouse tooltip: Name, building IDs in the topographic map and Open Street Map, 
roof albedo (0.351), type of building, storeys (including the level of basements). In 
comparison to the model in Google Earth, as shown in Figure 4.c, all rooftop elements 
including the parapet walls, elevators’ machine rooms, water tank, and cooling towers, except 
for one circled. Since the albedo is not available in Google Earth, and the GeoJSON is an 330 

open GIS format, the albedo models presented in this paper can facilitate more in 
sustainability study. 
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Figure 4. Results of rooftop albedo enrichment. (a) LiDAR-based albedo; (b) Example of an 

enriched LoD2 BIM; (c) the referential 3D model (Source: Google Earth). 335 

 

4.3.2 Green Rooftop Element Prediction Enrichment 
The other semantic enrichment test was conducted in Tan et al. (2019) on the green roof 
elements prediction. In a small area of 55,000 m2 in the target campus, there existed a few 
green roofs. There were two types of green roofs, i.e., turf and potted. In addition, we found 340 

the laser reflectance might have correlations with the green roof. Therefore, the classification 
of green roof elements from the remainder of reconstructed geometric primitives can be 
another task of semantic enrichment for this study.  
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In the pilot case, green roof elements are identified into two types: turf, where vegetation 345 

covering the entire surface of the roof; potted area, where plants live in pots or containers. 
Table 5a shows the excerpt of the data table of the pilot case for classification and 
enrichment, including average reflectance in percentage, the top area of each element in 
square meter, height in meter. The computational analyses were conducted on a Windows 10 
work area PC. The decision tree was trained by the rpart bundle (ver. 4.1), which is freely 350 

accessible on the R stage (ver. 3.4). The boundaries of the choice tree are: “min part = 2,” 
“max profundity = 5,” and “min container = 1.” Figure 5c shows the green rooftop 
components detection prepared by the decision tree, which utilized under 0.01s to get the last 
precise outcomes. Figure 5d shows the comparison of predicted green rooftops and aerial 
view of the 3D model on Google Earth. The screen capture of Google Earth shows genuine 355 

green rooftop components. The green areas, found primarily on top of three buildings, are 
highly correlated to the predicted green rooftop components. The semantic enrichment of the 
green rooftop makes our model semantically rich in terms of computer readable greenery.  

 
Figure 5. A small area of buildings with green roofs. (a) Excerpt of the training data; (b) the 360 

learned decision tree; (c) prediction results (dark = truf, light = potted); (d) Aerial view 
(Source: Google Earth). 

5. An indoor case of furniture 
5.1 A case at the Stanford University 
We selected the largest indoor instance in the Stanford 2D-3D-S dataset (Armeni, Sax, Zamir, 365 

& Savarese, 2017) to demonstrate the as-built modeling. The “Area_2 Auditorium_2” 
instance is the largest lecture hall room in a university building at the Stanford University. 
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Furthermore, it is known that indoor point clouds are more challenging for as-built modeling 
in general. First, the regular large planar objects such as floor and walls were removed 
because they are relatively easy to reconstruct. The removal took advantage of the given 370 

labels in the dataset. As a result, a noisy ‘scene’ cloud of 293 theater chairs remained as 
shown in Figure 6.a. The cloud S = { p1, p2, …, pn } ⊂ ℝ³ of n = 1,879,282 points. As shown 
in the right bottom corner in Figure 6.a, some parts were considerably noisy, incomplete, and 
cluttered. The study area was 14.80m x 14.87m. From the general design principles, we 
assumed every chair has 4 degrees of freedoms (DoFs) including the 3D location tx, ty, tz, and 375 

the heading direction rz, while the rotations around x and y axes were not allowed. Figure 6c 
visualizes the expected fitness landscape, which was very jagged over the x-y plane. It should 
be noted that the z and rz were set as the optimal values. The spikes in Figure 6c are the 
optimal transformation parameters [tx, ty]T (or modes). Figure 6d is the vertical projection, in 
which we can see the patterns are the x-y positions of the chairs. 380 

 

 
Figure 6. The indoor study case. (a) A noisy scene cloud S of 293 chairs (1,879,282 points); 

(b) the 4 degrees of freedom and boundary; (c) surface chart; (d) Contour chart in (a) (Source: 
authors; Xue et al. (2019a)) 385 

 

5.2 3D Reconstructions using Unimodal and Multimodal Algorithms 
The 3D reconstruction was formulated as a semantic registration approach by Xue et al. 
(2019b). Furthermore, two classes of optimization algorithms, i.e., a ‘unimodal’ algorithm 
CAM-ES and a multimodal algorithm NMMSO, were tested in parallel. As required by the 390 

semantic registration, an open BIM component ‘Theater chair’ was downloaded from a 3D 
model sharing website 3DWarehouse.com. The surfaces of the component were sampled into 
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a cloud 𝒞𝒞 of 1,802,939 points using an in-house developed Autodesk Revit plugin developed 
in Xue et al. (2019b). 

 395 

Given the scene cloud S (n points) and a ‘component’ cloud 𝒞𝒞 = { p1, p2, …, pm } ⊂ ℝ³ of m 
points, the task of 3D reconstruction for as-built BIM creation is equivalent to an 
optimization problem that finds all the instances of 𝒞𝒞 in S in the semantic registration 
paradigm (Xue et al. 2019b): 

 400 

arg min  𝑓𝑓(𝑥𝑥) = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝒞𝒞(𝑥𝑥), 𝑅𝑅) = [ 1
𝑚𝑚
Σ𝑝𝑝∈(𝑥𝑥) ∥ 𝑝𝑝 − 𝑁𝑁(𝑝𝑝, 𝑅𝑅)  ∥2]½  

          s.t. 𝒞𝒞(𝑥𝑥) = {𝑇𝑇𝑥𝑥(𝑝𝑝)|𝑝𝑝 ∈  𝒞𝒞},  
 𝑇𝑇𝑥𝑥(𝑝𝑝) = R (𝑝𝑝) + [𝑡𝑡𝑥𝑥, 𝑡𝑡𝑦𝑦, 𝑡𝑡𝑧𝑧]𝑇𝑇 

 R = �
cos 𝑟𝑟𝑧𝑧 − sin 𝑟𝑟𝑧𝑧 0
sin 𝑟𝑟𝑧𝑧 cos 𝑟𝑟𝑧𝑧 0

0 0 1
�, 

 𝑥𝑥 = [𝑡𝑡𝑥𝑥, 𝑡𝑡𝑦𝑦, 𝑡𝑡𝑧𝑧]𝑇𝑇 ∈  𝑅𝑅6 
[𝑡𝑡𝑥𝑥, 𝑡𝑡𝑦𝑦, 𝑡𝑡𝑧𝑧]𝑇𝑇 ∈  𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑥𝑥(𝐶𝐶) 
 𝑟𝑟𝑧𝑧 ∈  [0, 2𝜋𝜋)   

 𝑓𝑓(𝑥𝑥) ≤  𝜀𝜀 =  0.25𝑏𝑏𝑏𝑏𝑑𝑑𝑏𝑏𝒞𝒞 ≈ 0.01𝑏𝑏𝑏𝑏𝑑𝑑𝑏𝑏𝐶𝐶 

(1) 

 

Where parent is a function that returns the “parent” component that 𝒞𝒞(x) attaches to, 
boundingbox indicates the 3D bounding box of the scene cloud S (see Figure 6b), diag𝒞𝒞 
stands for the diagonal length of 𝒞𝒞, and diagC is the diagonal length of C. Also, the regular 
layout of concentric circles of the chairs is in line with architectural acoustic input to theatre 405 

designs (Mehta, Johnson, & Rocafort, 1999). 

 

Usually an optimal transformation parameters x* yields f(x*) = fmin (e.g., 0). However, 
regarding the possibility of instrumental, environmental, and calibration errors for the point 
cloud, as well as heterogeneous point density, geometric accuracy, occlusion, and clutters in 410 

the as-built measurement data, we relaxed the optimality condition to a satisfactory condition:  

 

𝑋𝑋 ∗ =  { 𝑥𝑥 ∗  | 𝑓𝑓(𝑥𝑥 ∗)  ≤   𝑓𝑓min +  𝜀𝜀 }, (2) 
  
where x* indicates one satisfactory solution (mode) to Eq. (1), X* is the set of satisfactory 
solutions, and ε denotes a small error tolerance.  

 415 

Figure 7a shows the results of a unimodal optimization algorithm named covariance matrix 
adaptation with evolution strategy (CMA-ES) to the solving of Eq. (1). The “unimodality” 
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means the algorithm returns one instance of chair each time. The as-built BIM in Figure 7a 
consisted of 288 chairs, saved as a 1.83 MB Revit file. Figures 10.7b shows the false 
negatives (undetected) and false positives (wrong location or rotation) of chairs in the 420 

generated as-built BIM from the top view. Figure 7c shows the results of a multimodal 
optimization algorithm named niching migratory multi-swarm optimizer (NMMSO). The 
“multimodality” stands for returning many, if not all, instances of chairs from one run. 
NMMSO took 414.5s to discover 300 solutions to Eq. (1) in the incremental build phase 
through the greedy processing (see Figure 2a). In the second stage, COBIMG-Revit was 425 

adopted and used CMA-ES to fine-tune the 300 chairs in BIM in 512.1s.  

 

 
Figure 7. Results of 3D reconstructions. (a) As-built BIM of 288 chairs automatically 

reconstructed in 1434.2s by CMA-ES; (b) top view of 236 true positive chairs (wired frames), 430 

52 false positives (dark), and 10 false negatives (circles); (c) as-built BIM of 300 chairs in 
926.6s by NMMSO; (d) top view of 267 true positive chairs (wired frames), 33 false positive 

(dark), and 26 false negative (boxes). (Source: authors; Xue et al. (2019a)) 

 
The confusion matrix of the chairs in the output BIM was listed in Table 3. The accuracy 435 

metrics for the unimodal algorithm CMA-ES were thus: 
 

 
precision = true positive

true positive + false positive
= 236

288
= 81.9%, 

recall      = true positive
true positive + false negative

= 236
288

= 80.5 %, 
𝐹𝐹1 = 2 𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑏𝑏𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏 ×  𝑟𝑟𝑝𝑝𝑝𝑝𝑑𝑑𝑟𝑟𝑟𝑟(𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑏𝑏𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏 +  𝑟𝑟𝑝𝑝𝑝𝑝𝑑𝑑𝑟𝑟𝑟𝑟) =  81.2%. 

(3) 
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Meanwhile, all three metrics of the multimodal algorithm NMMSO were about 10% higher 440 

than those by the unimodal optimization CMA-ES: 

 
precision = true positive

true positive + false positive
 = 267

300
= 89.0%,  

recall      = true positive
true positive + false negative

= 267
300

= 91.1%, 
𝐹𝐹1 = 2 𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑏𝑏𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏 ×  𝑟𝑟𝑝𝑝𝑝𝑝𝑑𝑑𝑟𝑟𝑟𝑟 / (𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑏𝑏𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏 +  𝑟𝑟𝑝𝑝𝑝𝑝𝑑𝑑𝑟𝑟𝑟𝑟) =  90.1%. 

(4) 

 

Table 3. A confusion matrix of the generated chairs in the generated 

Evaluation 
CMA-ES  NMMSO 

Chairs Not a 
chair 

 Chairs Not a 
chair 

Positive position and rotation 236 10  267 26 
Positive position but negative rotation (error > 

45°) 
16 -  - - 

Negative position (error > 25cm*) 36 -  33 - 
Subtotal 288 10  300 26 

*: 25cm is a quarter of the diagonal of the target chair 445 

 
 

5.3 Semantic Enrichment 
The semantic enrichment, in this case, was a more model-driven procedure. As a lecture hall, 
the seats arrangement was set to the pattern of concentric circles for an optimal acoustic 450 

design (Mehta, Johnson, & Rocafort, 1999). Then, 14 clusters of seating rows were labeled 
manually in 223.7 s. An RMSE regression of arcs aims to find the patterns from the centroids 
of the chairs. The output equations for all chairs were in Equations (5). From Eq. (5), we can 
find the center of the stage center was at (–5.832 m, –2.091 m). In addition, the radius r 
increased perfectly linearly row by row (R² = 0.9999). Similarly, we got the regression 455 

Equation (6) for the z values of the chairs’ centroids against x, y, and ρ in 0.06s. Eq. (6) 
shows the seat altitudes (z) were mainly in a linear relation with the row number. But, two 
more coefficients +0.005 and -0.003 suggested that the chairs had a 1:200 slope over the y-
axis and a 1:330 slope over the x-axis. Or, it can be a small error in calibrating the Stanford 
dataset.  460 

 
(𝑥𝑥 + 5.832) ² +  (𝑦𝑦 +  2.091)² =  𝑟𝑟² 
r = 0.913 𝜌𝜌 +  7.387 
𝜌𝜌 ∈ {1,2, … ,14}  

𝑅𝑅2 = 0.9999 

 
 
 
 

(5) 

 
   

𝑧𝑧 = 0.418 +  0.061 𝜌𝜌 –  0.003 𝑥𝑥 + 0.005𝑦𝑦 
𝜌𝜌 ∈  {1,2, … ,14} 
𝑅𝑅2 = 0.9673 

 (6) 
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The true pattern can be rebuilt from the symmetric regularization of the occupied arcs and 
isometric regularization of the angular distances between the chairs. First, the centers of 465 

groups of chairs were identified with local chairs as well the symmetric group of chairs, as 
shown in Figure 8a. Note that most of the missing chairs were compensated. In the isometric 
regularization, as shown in Figure 8b, the chairs in each extended cluster were first sorted by 
a clockwise order. The heading angles against the stage center (–5.832, –2.091) reordered the 
instances in 14 queues, then a maximum seat gap (or the minimum width of an aisle) at twice 470 

of the chair distance (2 × 55.26cm) segmented each queue into three groups. As a result, the 
14 clusters of 289 chairs were grouped into 42 sets. The z values were aligned to Eq. (6), 
accordingly.  

 

The semi-automatic regularization-based semantic enrichment (and 3D fine-tuning) 475 

processing took extra 228.6s after the 3D reconstruction. As shown in Figures 10.8c, a 
remarkable improvement was attained in the error distributions. The final as-built BIM 
achieved an accuracy at 99.3%, a recall at 98.0%, and an F1 score at 98.6%, in terms of the 
chairs. The RMSE between the BIM visible surface and the input field cloud was 8.79cm. In 
terms of ground-truth values, the average distance error was 9.6cm and the average angular 480 

error was 3.8°. 

 

The semantics of the concentric design pattern was enriched to the as-built BIM. The output 
was a 1.82 MB Autodesk Revit file. Figure 8e shows the screenshot of the properties of the 
first chair, with geometric information obtained from 3D reconstruction and semantic 485 

information from semantic enrichment. Some properties, such as e.g., 
“COBIMG_translation” and “COBIMG_rotation” indicate location, heading direction, and 
parent component. Furthermore, some properties such as “COBIMG_cluster” and 
“COBIMG_peer_left” note the semantics of the cluster, group, sequence, and the “neighbor” 
components of each chair.  490 

 
Table 4 compares the results of the as-built BIM creation in this section. The metrics include 
the RMSE between the measurement 3D points and the as-built BIM, time cost, 3D position 
error of chair centroids, angular error of rz, precision, recall, and F1 score. The accuracy of 
the automatic 3D reconstruction by NMMSO was about 10% higher than CMA-ES, with 495 

35% time saved versus CMA-ES. Furthermore, the as-built BIM with regularization-based 
semantic enrichment had an even better 99.3% precision and 90% recall, while the time was 
still less than CMA-ES. Besides, one can find an interesting collision between the global 
RMSE error and local BIM object (chair) based error metrics. The CMA-ES had the best 
RMSE but the lowest precision and recall of chairs. 500 

 



20 
 

 
Figure 8. Results of semantic enrichment of the as-built BIM. (a) Symmetric and isometric 

regularizations based on Eqs. (5) and (6); (b) 3D centroids of 289 regularized chair positions 
using the detected repetition equations; (c) the regularized and enriched model; (d) top view 505 

of 287 true positive chairs, 2 false positive (dark), and 4 false negative (boxes); (e) enriched 
semantic information. (Source: authors; Xue et al. (2019a)) 
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Table 4. Comparison of different algorithms on BIM chair detection, where the best value in 
each row is in bold 510 

Evaluation (unit) CMA-ES NMMSO 
NMMSO + 
semantic 

enrichment 
RMSE (cm) 8.10 10.38 8.97 
Computational time (s) 1,434.2 926.6 1,155.0 
Number of chairs  288 300 289 
Distance error (cm, mean ± 
stdev.) 

15.2 ± 7.7 13.7 ± 6.5 9.6 ± 3.5  

Angular error (°, mean ± stdev.) 17.6 ± 28.8 10.5 ± 15.0 3.8 ± 3.3  
Precision (%) 81.9 89.0 99.3 
Recall (%) 80.5 91.1 98.0 
F1 (%) 81.2 90.1 98.6 

 

6 Toward Digital Twin and Blockchain BIM 
There are, at least, two possible technological streams to push as-built BIM further. One is 
escalating the ‘as-built’ to a real-time virtual replica, i.e., digital twin. The other is extending 
the ‘BIM’ from isolated model files to an incremental process of changes and an 515 

interconnected chain of reliable information (Xue, Wu, & Lu, 2021). 

 

A digital twin is a “virtual representation of a physical object or system across its lifecycle, 
using real-time data to enable understanding, learning, and reasoning,” according to UK 
National Infrastructure Commission (2017). A digital twin with real-time data and 520 

information can monitor, simulate, and analyze complex systems. Examples of such systems 
include aircrafts, wind turbines, production shop floors, and building systems without close 
adjacency to the system physically. The value of digital twin lies in the monitored, simulated, 
and analytical results that can reveal emergent behaviors and mitigate unpredictable and 
undesirable consequences (Grieves & Vickers, 2017). By definition, a real-time updated as-525 

built BIM is a digital twin, i.e., digital twin building. Apart from the 3D reconstruction and 
semantic enrichment approaches, a digital twin building requires real-time data collection and 
near-real-time processing. Data imperfections, such as heterogeneous point density, 
geometric accuracy, occlusion, and clutters, challenges as-built BIM creation and digital 
twinning (Barazzetti, 2016). However, an integration of 3D digital reconstruction and 530 

semantics, e.g., global patterns of repetitive furniture as shown in Sect. 5.2 and Xue et al.’s 
(2020b) cross-sections of unknown symmetric objects, can ease the problems of data 
imperfections for building and city objects designed in design principles. Thus, the 
framework of digital twinning is an updated version of that of as-built BIM creation, with 
real-time sensors, communication networks, and systematic and efficient model updating 535 

mechanisms. 
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Xue and Lu (2020a) pinpointed another future direction as differential BIM changes and 
blockchain BIM. A subsequent challenge after the digital twin building is the trackability and 
traceability of the historical BIMs and information. It is incredibly inefficient to derive 540 

independent and isolated BIM files hour after hour, day after day. Because most as-built BIM 
components remain unchanged, one needs to back up the changes to the as-built BIM only. In 
other words, the temporal redundancy of the unchanged as-built information in many copies 
of BIM files should be eliminated. Xue and Lu (2020a) presented a feasible semantic 
differential transaction (SDT) approach that detects the minimal BIM changes in the semantic 545 

hierarchy. Another challenge can be distributed as-built BIM changes from different 
stakeholders at different physical places. Thus, a blockchain BIM architecture maintained by 
a permissioned group can synchronize all the BIM changes to form the blockchain BIM. 

 

7 Conclusion 550 

As-built BIM reflects the actual and current situations of a facility. To fulfill smarter building 
and smarter city development, as-built BIM is a strategically important urban information 
infrastructure. Based on the work presented in the literature and the demands in the industry, 
this paper concludes a general framework for as-built BIM creation and application. Notably, 
the 3D reconstruction of geometry and semantic enrichment of non-geometric and relational 555 

information are complementary means in the presented framework.  

 

Two demonstrative cases, one outdoor and the other indoor, are employed to explain the 
framework. Furthermore, one case shows how 3D measurement data is distilled for a 3D 
geometric model, while the other case shows how standard and open 3D BIM components 560 

are able to be utilized for as-built BIM creation. In the semantic enrichment to the outdoor 
case, the new semantic information, like albedos and green elements, was mainly driven by 
measurement data; in contrast, the new semantics was driven by knowledge as the concentric 
indoor design patterns. 

 565 

Besides the various value-added applications of as-built BIM in the literature, two future 
research directions are advised. One is the digital twin technology that replicates and analyzes 
the target facility in real-time. A digital twin building is an upgrade version of as-built BIM 
that emphasizes the timely information synchronization and decision support. The other 
direction is minimal changes over the version history of an as-built BIM and the potential 570 

blockchain BIM which integrates all the as-required, as-designed, as-planned, as-built (or 
“as-is”), as-altered, and as-demolished BIMs of a facility throughout its lifecycle. 
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