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Abstract  

The global Architecture, Engineering, and Construction (AEC) industry has witnessed 

surging demand for Construction Digital Transformation (CDT) over the past decade. Scan-

to-BIM delivers accurate as-is conditions and reconstructs detailed BIM for diverse CDT 15 

applications. Researchers have proposed automated scan-to-BIM using algorithms and AI to 

minimize labor demands, but a comprehensive review with systematic guidelines is lacking. 

This paper presents a conceptual model of scan-to-BIM processes and reviews development 

patterns and trends based on 58 cases. Based on the model, this paper offers a four-step 

guideline for AEC practitioners to adopt automated scan-to-BIM effectively. The 20 

contribution of this paper is three-fold. First, the conceptual model offers a comprehensive 

and simplified overview of scan-to-BIM processes for beginners. Secondly, trends emerge, 

e.g., transformation from rigid rules to AI methods. Thirdly, the best-practice guidelines 

empower AEC practitioners to maximize scan-to-BIM advantages tailored to their needs. 
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1 Introduction 30 

The Architecture, Engineering, and Construction (AEC) is a pillar industry in almost every 

nation’s economy, and occupies a central position in global sustainable development [1, 2]. 

Construction Digital Transformation (CDT) is pivotal to the development of the AEC 

industry [3, 4]. The core of CDT lies in integrating digital technologies throughout the entire 

lifecycle of construction projects, aiming to enhance efficiency, enhance sustainability and 35 

increase resilience, thereby advancing the United Nations Sustainable Development Goals 

(SDGs) [5]. CDT encompasses the key stages of design, construction, operation, and 

maintenance, each stage relying on advanced technologies such as Building Information 

Modeling (BIM), the Internet of Things (IoT), and Artificial Intelligence (AI) to optimize 

processes, while BIM provides comprehensive services throughout the entire lifecycle [6]. 40 

With its increasing success and deep use, such as BIM Level 2/3 in the UK [7], over 20 

mandatory BIM uses in Hong Kong [8], and ‘positive design’ in mainland China, BIM has 

demonstrated significant advancements. Among the top BIM uses, scan-to-BIM has become 

essential, as highlighted by the Hong Kong Construction Industry Council (HKCIC), which 

lists it among the 6 most popular BIM uses [9].  45 

Despite these advancements, there are often many deviations between the as-designed 

BIM and the as-built BIM, which poses challenges to the operation and maintenance of 

buildings. Technical barriers stem from manual operations in traditional scan-to-BIM, which 

are prone to errors and labor-intensive. Findings show that 60% of a building’s lifecycle costs 

focus on the operation phase, but manually creation of as-built BIM can delay maintenance 50 

[10].The creation and application of as-built BIM models has gradually become a research 

hotspot [6, 11, 12]. Scan-to-BIM is the main method for obtaining as-built BIM, which can 

provide digital assets for the construction, maintenance of buildings [13-15]. During the 

construction phase, scan-to-BIM can be used for progress monitoring and quality inspection 

to ensure that the construction process proceeds as planned [16]. During the maintenance 55 

phases, scan-to-BIM can provide detailed building information to support facility 

management (FM) and maintenance [17, 18]. 

Scan-to-BIM involves acquiring the current building data through light detection and 

ranging (LiDAR) or other 3D capture technologies, and then converting the data into a digital 

BIM model [6]. Traditional scan-to-BIM relies on manual operations by engineers, which is 60 

often time-consuming and labor-intensive, and prone to human errors. With the development 

of artificial intelligence, these manual tasks can be gradually completed automatically by 
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computers [19, 20]. Ideal automated scan-to-BIM involves the automation of data collection 

and data processing. Based on the automatic semantic segmentation and clustering of 3D 

point clouds, automatic object detection can be achieved by combining spatial relationships, 65 

and then BIM can be automatically obtained using parametric algorithms [21]. Due to 

extensive research efforts, the application scenarios of automated scan-to-BIM processes are 

also constantly expanding, covering many fields such as historical building protection [22-

24], urban planning [25, 26], and construction progress monitoring [27]. 

Automated scan-to-BIM is a complex but demanded task. The initial stage of this 70 

process involves the collection of 3D point cloud data, which can capture high-precision 3D 

representations of buildings or construction sites [28, 29]. Although the raw data points are 

dense and rich in geometric information, they also contain a lot of noise and redundant 

information. Consequently, data cleaning and down-sampling form a critical step [30-32]. 

Data cleaning aims to remove noise, erroneous points and redundant data to ensure the 75 

accuracy and efficiency of subsequent processing [33, 34]. Down-sampling regularizes the 

density of point cloud data and reduces the amount of data while maintaining the geometric 

structure [31]. Then, semantic segmentation is conducted to identify various architectural 

elements and structures from 3D point clouds, thereby enriching the model with semantic 

information, and adding to the geometric data [35-37]. The final stage involves converting 80 

the processed 3D point clouds into a BIM model through parametric modeling, along with 

model layout and registration [6, 38]. 

Many general architectural elements, such as walls, floors, or ceilings, equip with 

vertical or horizontal extrusions from regular 2D shapes. Rule-based methods, therefore, can 

extract the vertical or horizontal geometries and topological information from 3D point 85 

clouds using algorithms like random sample consensus (RANSAC) or geometric hashing. 

RANSAC searches for the minimum bounding box of a point cloud to infer the shape of the 

object [39], while geometric hashing generates lines or surfaces from the point cloud 

distribution to determine object shapes [40]. Although rule-based methods have high 

classification performance for defined elements [41], they have great limitations for objects 90 

with special structures, such as chairs or tables [42]. Occlusion during the scanning process 

poses additional challenges for extracting information from 3D point clouds [43, 44]. 

Semantic segmentation based on deep learning can extract information from point clouds 

where various objects coexist, effectively making up for the shortcomings of rule-based 

methods [45-47]. 3D point cloud semantic segmentation, as a core step in automation, faces 95 
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challenges such as reliance on large-scale training data, difficulty in handling complex 

structures (such as irregular building elements), and occlusion problems. 

Existing reviews and surveys on scan-to-BIM in the literature have primarily focused on 

specific aspects of the technology, including its principles, methods, and typical applications. 

Volk et al. [48] analyzed the Scan-to-BIM applications for existing buildings. Rashdi et al. 100 

[49] focused on the impact of scanning technologies such as LiDAR and oblique photography 

on Scan-to-BIM. Bassiere et al. [50] reviewed the existing methods for reconstructing BIM 

walls in an unsupervised manner. In addition, case studies mainly focus of existing research 

[51], such as rule-based scan-to-BIM method [41], and the scan-to-BIM workflow for 

cultural heritage [52]. However, there is still a significant gap in the comprehensive 105 

understanding of the automation processes involved in scan-to-BIM, especially the 

integration of advanced artificial intelligence (AI) technologies and the optimization of the 

scan-to-BIM process. Existing literature often lacks a detailed comparative analysis of the 

latest automation methods, including their advantages, limitations, and practical 

implementation challenges. In practice, AEC practitioners lack clear guidelines, which 110 

hinders the selection of suitable technologies for project scenarios and leads to inefficient 

resource use. 

This paper aims to address three research questions as follows: (1) What are the core 

components, technical approaches, and their interrelationships in automated scan-to-BIM? (2) 

What are the recent trends and research hotspots in automated scan-to-BIM? (3) How can 115 

best-practice guidelines be formulated to accommodate varied applications and project 

requirements? In order to answer these questions, this paper aims to comprehensively review 

the latest advances in automated scan-to-BIM. A conceptual model is proposed to provide a 

comprehensive and abstract overview of the scan-to-BIM process for newcomers. Then, a 

technological analysis summarizes recent trends, such as a paradigm shift from rigid decision 120 

rules to artificial intelligence approaches. Finally, this paper compiles best practice guidelines 

that enable AEC practitioners to benefit the most from adopting scan-to-BIM processes based 

on the given work scenario and application needs. The rest of the paper consists of four 

sections. Section 2 introduces the research methodology, Section 3 compares the automated 

scan-to-BIM processes, and Section 4 gives guidance for selecting a suitable automated scan-125 

to-BIM processes. Section 5 is the conclusion of this review. 
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2. Research methods 

This study employed an archival study framework comprising five steps: (1) Development of 

conceptual model; (2) Literature collection and case interpretation; (3) Bibliometric analysis; 130 

(4) Comparative evaluation of different technologies; and (5) Compilation of the best-

practice guideline. 

2.1 Conceptual model 

Fig. 1 shows the generalized conceptual model of automated scan-to-BIM workflow to 

elucidate the research objectives and provide supporting materials for the guideline. This 135 

conceptual model comprises five interrelated components: (1) data acquisition method, (2) 

data processing and semantic enrichment, (3) general architectural elements (AEs) and 

detailed BIM objects, (4) software, and (5) CDT stage. 

 
Fig. 1. Guiding conceptual model of scan-to-BIM. 140 

The data collection of 3D point cloud data is realized through the use of LiDAR 

technology. The LiDAR system calculates the distance of the target object by emitting laser 

pulses and measuring their return time, thereby generating accurate 3D coordinates. LiDAR 

can be fixed on different mobile platforms such as unmanned aerial vehicles (UAVs) and 

robots, or can be utilized as handheld equipment for data collection. Given the substantial 145 
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volume of 3D point clouds, it is necessary to process the raw data with data cleaning and 

down-sampling. The semantic information of the 3D point clouds needs to be obtained, and 

deep learning-based algorithms have proven to be effective for the automated processing of 

semantic enrichment. 

Geometric representations of general AEs, such as walls, floors, and beams, can be 150 

generated using plane fitting or surface fitting techniques. However, for architectural 

elements with complex structures, such as chairs, sofas, and tables, the processes of surface 

fitting and parametric modeling can be time-consuming and cumbersome. To address this, 

registration is employed to match the 3D point cloud data with the BIM model. This involves 

using sampling algorithms to generate 3D point cloud data from the surface of the BIM 155 

model. Common sampling methods include uniform sampling, random sampling and 

curvature-based sampling. Subsequently, feature extraction and comparison are performed to 

obtain accurate BIM models of architectural elements with intricate structures through point 

cloud registration. The components within the conceptual model can be further categorized 

by different classifications, as illustrated in Table 1.  160 

Table 1. Descriptors of five components of scan-to-BIM conceptual model. 

Component Descriptor Code Examples 
Scene Infrastructure Infra. Bridges, Tunnels 

Buildings Bldgs. Apartment Building, Office 
Data acquisition 
method 

Handheld Laser Scanners HLS Geosys PX-80 
Terrestrial Laser Scanners TLS Faro Focus 3D X 130 
Mobile Scanning Systems MSS Nav-Vis M6 
UAV-based Scanning Systems USS DJI Phantom Four 
Robotic Scanning Systems RSS Boston Dynamics BigDog 

 Established dataset ED S3DIS 
Semantic 
segmentation of scans 

Handcrafted Annotation HA - 
Rule-based RB - 
Traditional Machine Learning TML HDBSCAN 
Deep learning DL PointNet 

BIM Software Commercial Comm. Autodesk Revit 
Open Open Blender 

CDT stage Construction Const. - 
Operation and maintenance O&M - 
Conservation of historical buildings CHB - 

Data acquisition method encompasses handheld equipment, mobile systems, UAV-based 

platforms, robot-based systems, and terrestrial laser scanning (TSL). A significant challenge 

impeding the automation of the scan-to-BIM process is the semantic segmentation of 3D 

point clouds. Although algorithms such as PointNet [53] and Mask3D [45] have 165 

demonstrated commendable performance on public datasets, the software-assisted acquisition 

of semantic information from 3D point clouds remains a prevalent method in contemporary 

research. The use of software significantly enhances the automation capabilities of the scan-
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to-BIM process. Commonly utilized commercial software includes Autodesk Revit, Autodesk 

Recap, and Trimble RealWorks, whereas open-source platforms include Blender and 170 

CloudCompare. Current research primarily focuses on the application of automated scan-to-

BIM in infrastructure, industrial facilities, and urban architecture. Additionally, these 

applications involve the preservation of historical buildings, as well as the construction 

management and maintenance of existing buildings 

2.2 Literature collection 175 

Based on the criteria provided by the preferred reporting items for systematic reviews and 

meta-analyses (PRISMA), a literature search was conducted using the keywords mentioned in 

the conceptual model. The databases used for the literature search included Web of Science, 

Google Scholar, and Scopus database. The search strategy of this study covers popular 

algorithms involved in AI by focusing on keywords such as semantic segmentation and point 180 

cloud classification. The query strings were "scan-to-BIM" ("Scans to Parametric BIM*" OR 

"Scan-vs-BIM") AND "Point Cloud Modelling" ("3D laser scanning*" OR "Scanning 

Technologies*" OR "LiDAR") OR "3D point clouds classification" ("Semantic 

Segmentation*" OR "Instance segmentation") OR "artificial intelligence" ( "deep learning*" 

OR "machine learning"). The search results of this review covered journal and conference 185 

papers, books, dissertations, and reports published in recent years, but did not include patents 

and legal cases. The screening and data extraction for this review were performed 

independently by two researchers to reduce the risk of human error and subjective bias. The 

search period was from 2015.01 to 2025.08, and the search language was English. 

The initial search yielded 812 articles, and initial screening was performed by examining 190 

titles, abstracts and keywords, which resulted in 369 articles. Studies not related to the AEC 

industry, such as agriculture or medicine, were excluded. All articles were subjected to full-

text screening based on specific eligibility criteria. The criteria were (1) original research 

contributions rather than literature reviews, and (2) incorporation of automated scan-to-BIM 

into practical applications within the AEC industry, described in sufficient detail in the 195 

literature. The automated scan-to-BIM within 58 publications were analyzed, guided by the 

conceptual model, and data were extracted using the basic information of the selected 

empirical studies presented in Table 1 to produce Table 2. 

Table 2. List of 58 actual cases of automating scan-to-BIM. 

No. Reference Year Scene 
Data 
acquisition 
method 

Semantic 
segmentation 
of scans 

BIM 
Software 

CDT 
stage 

1 Mahmoud et al. [55] 2025 Bldgs. HLS DL Comm. O&M 
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2 Luo et al. [56] 2025 Infra. USS RB Comm. O&M 
3 Elsharkawi et al. [57] 2025 Bldgs. Multi DL Comm. O&M 
4 Patil et al. [58] 2025 Bldgs. ED DL Open O&M 
5 Liu et al. [59] 2025 Bldgs. MSS DL Open O&M 
6 Ma et al. [51] 2025 Bldgs. ED DL Comm. O&M 
7 Kang et al. [60] 2025 Bldgs. USS DL Comm. O&M 
8 Elsharkawi et al. [57] 2025 Bldgs. USS HA Comm. Const. 
9 Chen et al. [42] 2024 Bldgs. HLS TML Open O&M 
10 Cho et al. [61] 2024 Bldgs. Multi HA Comm. O&M 
11 Rocha et al. [62] 2024 Bldgs. USS HA Comm. CHB 
12 Yang et al. [63] 2024 Infra. Multi TML Multi O&M 
13 Mahmoud et al. [54] 2024 Bldgs. MSS DL Comm. O&M 
14 Pan et al. [64] 2024 Bldgs. Multi DL Comm. CHB 
15 Pepe et al. [65] 2024 Bldgs. HLS HA Open CHB 
16 Wang et al. [66] 2024 Bldgs. TLS DL Comm. O&M 
17 Rocha et al. [67] 2024 Bldgs. Multi HA Comm. CHB 
18 Birkeland et al. [68] 2024 Bldgs. TLS DL Comm. O&M 
19 Zhu et al. [69] 2024 Bldgs. TLS DL Comm. O&M 
20 Kellner et al. [32] 2023 Bldgs. TLS DL Multi O&M 
21 Kim et al. [70] 2023 Infra. ED DL Multi O&M 
22 Stanga et al. [71] 2023 Infra. Multi DL Multi CHB 
23 Aftab et al. [72] 2023 Bldgs. TLS HA Comm. O&M 
24 Jarzabek et al. [73] 2023 Bldgs. TLS HA Open O&M 
25 Abreu et al. [74] 2023 Bldgs. TLS HA Open O&M 
26 Martens et al. [75] 2023 Bldgs. TLS RB Multi O&M 
27 Hu et al. [76] 2023 Bldgs. RSS DL Multi Const. 
28 Kim et al. [77] 2023 Bldgs. TLS DL Comm. O&M 
29 Croce et al. [78] 2023 Infra. TLS TML Comm. CHB 
30 Xie et al. [79] 2023 Bldgs. TLS DL Comm. O&M 
31 Campagnolo et al. [80] 2023 Bldgs. ED DL Comm. CHB 
32 Wang et al. [81] 2022 Bldgs. ED DL Multi O&M 
33 Park et al. [47] 2022 Infra. TLS DL Multi O&M 
34 Pan et al. [82] 2022 Bldgs. TLS DL Comm. O&M 
35 Ma et al. [83] 2022 Bldgs. TLS TML Multi O&M 
36 Qiu et al. [31] 2022 Bldgs. TLS RB Multi O&M 
37 Truong et al. [84] 2022 Bldgs. TLS RB Comm. Const. 
38 Geyter et al. [85] 2022 Bldgs. Multi DL Comm. O&M 
39 Perez et al. [86] 2021 Bldgs. ED DL Multi Const. 
40 Kang et al. [41] 2020 Bldgs. Multi RB Comm. Const. 
41 Andriasyan et al. [87] 2020 Bldgs. TLS RB Multi CHB 
42 Ma et al. [88] 2024 Bldgs. ED DL Comm. O&M 
43 Nieto-Julián et al. [89] 2024 Bldgs. Multi TML Comm. CHB 
44 Cai et al. [90] 2024 Bldgs. ED DL Comm. Const. 
45 Bosché et al. [91] 2015 Bldgs. TLS HA Comm. Const. 
46 Barazzetti et al. [92] 2016 Infra. TLS HA Multi CHB 
47 Laefer et al. [93] 2017 Bldgs. TLS TML Comm. O&M 
48 Macher et al. [94] 2017 Bldgs. TLS RB Multi O&M 
49 Adan et al. [95] 2018 Bldgs. Multi RB Open O&M 
50 Wang et al. [96] 2018 Bldgs. TLS HA Open Const. 
51 Wang et al. [14] 2019 Bldgs. TLS HA Open O&M 
52 Capone et al. [97] 2019 Bldgs. Multi HA Comm. CHB 
53 Mellado et al. [98] 2019 Bldgs. Multi HA Multi O&M 
54 Rocha et al. [33] 2020 Bldgs. Multi HA Multi CHB 
55 Pepe et al. [99] 2020 Infra. TLS HA Multi CHB 
56 Croce et al. [100] 2021 Bldgs. TLS TML Multi CHB 
57 Pepe et al. [99] 2021 Bldgs. Multi HA Multi CHB 
58 Perez et al. [36] 2021 Bldgs. TLS TML Comm. O&M 

 200 
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Data acquisition method (DAM), software used, semantic enrichment methods, research 

scenarios, and applications were coded for each article. For instance, Mahmoud et al. [54] 

collected 3D point cloud data of indoor scenes using a mobile platform (Nav-Vis M6), 

performed down-sampling, and applied plane detection based on RANSAC to identify room 

boundary segments. They conducted semantic segmentation of the 3D point clouds using the 205 

RandLA-Net algorithm. The dataset utilized was S3DIS, and the Dynamo plug-in was 

integrated with Autodesk Revit software to implement the BIM parametric algorithm for 

automatic 3D model reconstruction, thus providing a technical basis for the application of 

smart cities and digital twins. 

2.3 Bibliometric analysis 210 

This paper uses bibliometric analysis to quantitatively analyze the structure and dynamics of 

current academic research, through keyword co-occurrence, and cluster-based topic analysis. 

These methods systematically reveal the research trends and hotspots within a specific field, 

providing researchers with a comprehensive perspective. The keywords in an article are a 

highly condensed summary of the research content. By drawing a knowledge domain map of 215 

the literature's keywords, the focus and potential development trajectory of current scan-to-

BIM processes can be intuitively displayed. Cluster-based topic analysis can divide a large 

number of documents into several topic groups, helping researchers understand the main 

directions of the scan-to-BIM processes and their interrelationships, and facilitating the 

discovery of potential research gaps and future research trends. 220 

Based on the literature collection in section 2.2, this review utilizes CiteSpace software 

to calculate the co-occurrence frequency among keywords, thereby obtaining the co-

occurrence matrix and constructing the keyword co-occurrence network. The nodes in the 

network represent keywords, and the edges represent the co-occurrence relationship between 

these keywords, with the edge weights typically corresponding to the co-occurrence 225 

frequencies. Based on the keyword co-occurrence network map, K-means clustering is used 

to divide the keywords into several topics according to their co-occurrence relationships. This 

approach allows for the analysis of the characteristics of each theme, thereby revealing the 

foundational of current scan-to-BIM process and providing direction for future studies. 

Through the above-mentioned bibliometric analysis, this review can provide theoretical 230 

guidance for AEC practitioners, clarify research topics, and enhance efficiency and 

effectiveness in practical work. 
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2.4 Technological analysis 

Based on technological analysis, this paper explores the various technical methods and their 

applications involved in automated scan-to-BIM processes, which can reveal the current 235 

development and cutting-edge trends. Technological analysis can help researchers and 

practitioners understand the advantages and limitations of various technical approaches, 

providing a scientific basis for technology selection and optimization. We conduct a 

systematic technical analysis from the dimensions of research trends and data collection, data 

cleaning and down-sampling, semantic segmentation of scans, layout and registration, and 240 

BIM software. 

Before data collection, equipment evaluation is essential to select appropriate equipment 

that meet the project requirements. The evaluation involves candidate scanning equipment’s 

characteristics across multiple dimensions, such as scanning range, portability, as well as 

storage and processing costs. During data collection, data quality control on completeness, 245 

density, uniformity, and geometric accuracy has to be maintained [28]. Data cleaning and 

down-sampling can further enhance point data quality (e.g., better uniformity) and processing 

efficiency, which also save storage and processing costs. Methods such as statistical filtering, 

radius filtering, and conditional filtering are employed for data cleaning, while voxel grid, 

random, and uniform methods are used for data down-sampling. These techniques ensure the 250 

efficiency of subsequent model construction and analysis. Semantic segmentation of scans 

helps to identify and distinguish categories of 3D point clouds. Commonly used semantic 

segmentation methods include deep learning models such as convolutional neural networks 

(CNNs) and graph convolutional networks (GCNs). The operations of layout and registration 

are essential to match specific BIM objects. Analysis of BIM software can determine the 255 

suitable tools for the scan-to-BIM process, by assessing the functionality, compatibility, and 

user-friendliness of the software, we can ensure the efficiency and accuracy of data 

processing and BIM modeling. 

Technical analysis provides the basis for the compilation of the best-practice guideline. 

Through these analyses, it is possible to ensure the selection of the appropriate technical 260 

solutions during the implementation of scan-to-BIM processes, thereby enhancing the 

efficiency and accuracy of data acquisition, processing, and modeling.  

2.5 Compilation of the best-practice guideline 

Constructing a standardized and adaptable set of best-practice guideline for automated scan-

to-BIM, which can help solve the problem of technology fragmentation in the AEC industry, 265 
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and improve automation efficiency. The development of compiling such a guide requires the 

division of steps, the necessity of each step, the target users, and the final deliverable format. 

The first step in developing the guide is to conduct a needs analysis and scope definition. 

The purpose of this step is to identify pain points in the existing workflows, such as data 

acquisition method and software incompatibility issues in the automated scan-to-BIM 270 

process. Clear objectives and boundaries ensure that the development of the guide is well-

targeted. The subsequent step involves literature review and benchmark analysis, which 

integrates mature methods from academic research and case studies to establish an evidence-

based recommendation framework. This step can provide a foundation for drafting the guide. 

During the drafting phase, it is essential to translate consensus into actionable steps. Through 275 

actual project testing and iterative optimization of the guidelines, it is possible to identify and 

correct any deficiencies, ensuring the guide's feasibility and practicality. 

The target users of the guide include project managers, software developers, and 

researchers. The final deliverable format of the guide should be an instruction document, 

which includes a decision tree for user selection and the necessary textual descriptions. 280 

Finally, the disclaimer of the guide is that the guidelines proposed in this review are only 

suggestions and need to be adjusted according to project constraints. The authors are not 

responsible for errors resulting from misuse or tool deficiencies, and users are required to 

independently verify compliance with local regulations. 

 285 

3. Analytical results 

Based on a systematic analysis of practical cases, this section employed Sankey diagram 

visualization and bibliometric methods. Building on this, the distribution characteristics of 

current automated Scan-to-BIM across different dimensions are revealed. By identifying a 

significant paradigm shift in the field from traditional rule-driven approaches to AI-driven 290 

approaches, this analysis provided an empirical basis for subsequent technical analysis and 

the development of practical guidelines. 

3.1 Selection patterns of automated scan-to-BIM system 

An overview of the 58 automated scan-to-BIM projects is presented in the form of a Sankey 

diagram in Fig. 2. The five main components of the conceptual model are shown from left to 295 

right, namely, scene, data acquisition method, semantic segmentation of scans, BIM software, 

and construction digital transformation (CDT) stage. 
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Fig. 2. Sankey chart of automated scan-to-BIM. 

In the Sankey chart diagram, the size of the rectangle indicates the number of cases 300 

involving different labels, and the curved "flow" between components represent the 

frequency of co-occurrence in the 58 cases. Analysis of Table 2 and Fig. 2 reveals that the 

selection mode of the automated scan-to-BIM system can be summarized as follows: 

 (1) The current scan-to-BIM case scenarios are mainly (50 out of 58) focused on the 

exterior or interior structure of buildings. Since there are often differences between the design 305 

model and the as-build BIM, by capturing detailed geometric information of indoor MEP [79, 

81] and air-conditioning and mechanical ventilation (ACMV) [42], it can better support the 

operation and management of buildings. Scan-to-BIM technology in the infrastructure field is 

mainly used for digital modeling and management of large structures such as bridges [63, 

101] and tunnels [47]. Some infrastructure, such as the Toppoli Bridge [102], also belongs to 310 

the category of historical buildings. Based on scan-to-BIM, not only the geometric 

information of the building is preserved, but also detailed data such as materials, structure 

and decoration can be included, providing a scientific basis for restoration and maintenance 

work [25, 71, 103, 104]. 

Apart from the on-site collection of 3D point clouds, commonly used established 315 

datasets include Stanford Large-Scale 3D Indoor Spaces (S3DIS) [89] and ModelNet40 

[105]. The S3DIS dataset is a large-scale 3D indoor space dataset created by Stanford 
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University. This dataset comprises 3D scan data collected from six different buildings, 

covering various indoor scenes such as offices, conference rooms, and hallways. ModelNet40 

is a widely-used 3D CAD model dataset created by Princeton University, which contains 3D 320 

object models from 40 different categories. 

 (2) Terrestrial laser scanning (TLS) is the most prevalent method for 3D point cloud 

acquisition, featuring in nearly half (26 out of 58) of the cases. TLS is usually mounted on a 

tripod, and is favored for its high accuracy and density. Common models include the Leica 

RTC360 [31, 66] and the Faro Focus3D S120 [62, 67]. Handheld laser scanning (HLS) is 325 

lightweight and easy to carry, allow operators to directly hold the equipment for scanning 

[42]. Mobile scanning systems (MSS), installed on vehicles, ships, or other mobile platforms, 

can continuously collect 3D point cloud data while moving [27]. In addition, based on drones 

[26, 61, 62] or robots [76], through pre-programmed paths or autonomous navigation 

functions, can perform 3D laser scanning tasks in special scenarios. The drone- and robot-330 

borne methods are particularly suited for rapid scanning of large areas, as well as hard-to-

reach or hazardous locations. 

However, LiDAR point cloud acquisition of small, openings or glass objects faces 

inherent limitations. Limited spatial resolution of lasers, particularly for distant objects, 

results in incomplete capture of small objects like fire sprinklers; Transparent and reflective 335 

surfaces can cause laser signal loss or scattering, and leads to voids or noises in the point 

cloud, respectively. Utilizing multiple data acquisition equipment or methods can mitigate 

these constraints by reducing coverage gaps and measurement errors in the literature. The 

inclusion of high-definition imagery, for example, can enhance the semantic richness of 3D 

datasets for accurate object classification, material identification, and comprehensive 340 

interpretation of complex environments [66]. 

 (3) Nearly 43.1% (25 out of 58) of the cases use deep learning-based methods to 

achieve semantic segmentation of 3D point clouds. Existing semantic segmentation 

algorithms based on deep learning can be generally divided into the following categories: (i) 

Point convolutional network. PointNet [53] is one of the earliest deep learning models used 345 

for point cloud classification and segmentation. It achieves classification by learning global 

and local features of point clouds [83]. PointNet++ [106] introduces a hierarchical structure 

on this basis, further improving the segmentation effect [68, 76]. (ii) Voxel-based methods 

divide the point cloud into voxel grids and then perform convolution operations on each 

voxel [73, 74], with models like VoxNet [107] and 3D U-Net [32, 108]. (ii) Graph-based 350 
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methods treat point clouds as graph structures and use graph neural networks (GNNs) to 

capture the relationship between points, with models such as GAPointNet [109] and Graph-

CNNs [30]. 

 (4) Commercial BIM software usually provides more comprehensive functions and 

professional technical support, while open-source software has higher flexibility and 355 

customizability. Autodesk ReCap and Revit are two commercial software that are currently 

widely used. Autodesk ReCap [62, 67] is mainly used for pre-processing of point cloud data, 

such as data cleaning, noise reduction, and preliminary geometric reconstruction. Autodesk 

Revit [41, 85] is a BIM software widely used in the AEC industry. It supports full-process 

management from design to construction to operation and maintenance. Its main functions 360 

include 3D geometric mapping and object-based modeling. Some software needs to be used 

in conjunction with specific models of 3D point cloud acquisition equipment, such as Trimble 

RealWorks [61], which supports full-process management from data acquisition to final 

model generation. In addition, Blender's open-source characteristics and active community 

support make it a highly customizable and extensible tool suitable for projects that require 365 

flexible processing and innovative solutions. 

 (5) As-built BIM is an essential digital asset supporting the operation and maintenance 

(O&M) of buildings, enhancing information management across various stages of the 

building lifecycle, particularly in facility management and space management [36, 69]. Scan-

to-BIM is an effective method for obtaining as-built BIM, enabling construction quality 370 

monitoring, reducing human errors, and accelerating project delivery during the construction 

(const.) phase [41, 86]. The digital twin based on scan-to-BIM can also reduce material waste 

and rework, saving both costs and time. For newly constructed buildings, such as indoor 

scenes of university buildings, evaluating the geometric uncertainty of the created BIM 

model supports operational and maintenance management of building projects, especially in 375 

civil engineering fields that require high precision [73]. For aging concrete buildings, the 

purpose of scan-to-BIM is to improve safety inspection processes, supporting efficient 

maintenance decision-making [60]. In the conservation of historical buildings (CHB), scan-

to-BIM is utilized to record and analyze, connecting different databases to support the 

preservation, management, and restoration of cultural heritage [99, 100, 110]. 380 

3.2 Keyword co-occurrence and cluster analysis 

Keywords provide a concise overview of an article’s research content. In this review, we 

visualize a knowledge domain map of literature keywords to highlight current research 
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focuses and potential future directions. As shown in Fig. 3, a collaborative analysis of 

keywords was implemented, which clearly illustrates the research dynamics of the automated 385 

scan-to-BIM processes. In this Figure, the importance of keywords is reflected by the font 

size. The larger the font, the higher the frequency of the keyword. The strength of the 

association between keywords is represented by the thickness of the connecting line. The 

thicker the line, the closer the relationship between the keywords. 

As illustrated in Fig. 3, scan-to-BIM is integrally linked to established domains such as 390 

3D point cloud processing, semantic segmentation, and building information modeling for 

construction. Moreover, it demonstrates substantial interactions with emerging technologies, 

including advanced laser scanning and 3D reconstruction. In particular, "culture heritage" and 

"facility management" reflect the application potential of scan-to-BIM processes in 

engineering. Additionally, Fig. 3 reveals a dense cluster centered on "point cloud," 395 

underscoring the high importance of this topic in the relevant literature. These keywords form 

the core concept and technical application of 3D point cloud data in scan-to-BIM processes, 

enabling the automatic detection and extraction of architectural elements through high-

precision data acquisition and processing. The above analysis indicates that scan-to-BIM 

serves a bridge connecting the physical world and the digital world. Future research should 400 

explore the use of advanced artificial intelligence methods to optimize scan-to-BIM 

processes. Concurrently, emphasis should be placed on interdisciplinary collaboration to 

foster the deep integration of theory and practice. 
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Fig. 3. Co-occurrence network mapping of keywords. 405 

By performing cluster-based topic analysis on the literature, the association of hidden 

characteristic topics can be revealed in different literature, which is crucial for conducting a 

systematic review. The cluster topic analysis was performed using the log-likelihood ratio 

(LLR) algorithm in CiteSpace software, with the results presented in Fig. 4. Each group is 

marked with a unique color code. By exploring these different clusters or topics, the objective 410 

is to identify the research hotspots and challenges encountered by automated scan-to-BIM 

processes. 

The largest cluster (labeled as "#0") is centered around "point clouds," this cluster is 

connected to several other clusters such as "terrestrial laser scanning", "3D semantic 

segmentation", "classification", "progress tracking", "quality assessment". These clusters 415 

represent different aspects of the scan-to-BIM processes, including data acquisition, 

processing, analysis, and management. The cluster "scan to BIM" (#6) serves as a key node 

in the network, and it is associated with various other keywords such as "architectural 

heritage", "facilities management", "quality", and "reverse engineering". The network 

visualization provides insights into key topics and trends in research on automated scan-to-420 

BIM processes, highlighting areas that require further investigation to address challenges and 

advance the technology. 
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Fig. 4. Cluster-based topic distribution. 

 425 

3.3 Research trends 

In recent years, research on Scan-to-BIM has exhibited concurrent trends of diversification 

and intelligent development. A comprehensive analysis reveals a steady increase in the 

number of related publications, as illustrated in Fig. 5. The focus of research has evolved 

from an early reliance on terrestrial laser scanning [67-69] to a broader adoption of various 430 

methods, including handheld laser scanning [42] and mobile scanning systems [27], in order 

to meet the requirements of different application scenarios in terms of accuracy, efficiency 

and accessibility. In particular, advances in unmanned aerial vehicle and robotic technologies 

[76] have led to significant breakthroughs in acquisition of point clouds within high-risk 

environments. To address the storage and processing burdens associated with high-density 435 

point clouds, data cleaning and down-sampling techniques have been continuously refined 

[111], encompassing statistical filtering, radius filtering, and conditional filtering, as well as 

voxel grid, random, and uniform down-sampling, with the aim of improving both data quality 

and processing efficiency [114]. 
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In the stages of semantic and instance segmentation, deep learning approaches have 440 

significantly improved accuracy in complex scenes [118]; however, challenges remain in 

environments with high density and occlusions. In terms of building layout reconstruction 

and component matching, research has progressively shifted from traditional geometric 

feature extraction toward deep learning-based methods [127, 128], incorporating 3D feature 

learning networks into matching and registration processes to enhance robustness. Regarding 445 

software support, developments included the seamless integration between Autodesk ReCap 

and Revit to the flexible plugin ecosystems of open-source platforms such as Blender, which 

reflected an increasing demand for cross-platform and cross-format data exchange and 

collaborative modeling [62, 67]. Overall, the Scan-to-BIM domain is rapidly progressing 

toward multi-source data fusion, higher levels of automation, and intelligent processing. The 450 

dual driving forces of hardware diversification and algorithmic intelligence continue to 

expand its application potential in the management of the entire lifecycle of buildings. 

 
Fig. 5. Research trends and data acquisition equipment, Jan. 2015-Aug. 2025.  

Therefore, systematically summarizing the guiding principles of Scan-to-BIM is 455 

essential for coordinating diversified equipment selection, optimizing data processing 

workflows, and improving the accuracy of semantic segmentation and model generation. 

Guidelines for adopting Scan-to-BIM processes can serve as standardized references for 
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practice amid rapid technological advancement, thereby facilitating the transition of industry 

applications from experimental research toward large-scale, engineering-oriented 460 

implementation. 

 

4. Technological analysis and guidelines 

Building on the preceding systematic literature review and case analyses, this section 

undertook the technical exploration and formulates practice-oriented guidelines. A multi-465 

dimensional technical analysis enables an evaluation of the applicability of current research. 

By integrating different construction stages, a clearly structured four-step implementation 

framework is proposed, which aims to provide AEC practitioners with comprehensive 

decision support spanning from technology selection to practical implementation. 

4.1 Technological analysis results 470 

The technical analysis provided an in-depth review of the core stages within the automated 

Scan-to-BIM pipeline, covering five areas: data acquisition hardware, data cleansing and 

down-sampling, semantic segmentation of scans, layout estimation and registration, and 

widely used software tools. 

4.1.1 Data acquisition equipment 475 

The initial step in implementing a scan-to-BIM system is to select appropriate equipment for 

acquiring 3D point cloud of the real world. This involves evaluating various scanning 

methods and factors such as accuracy, scanning range, portability, and cost to determine 

which technology that suits the project's requirements. 

Terrestrial laser scanning (TLS) provides high measurement accuracy and resolution, 480 

and are particularly suitable for scenarios where detailed documentation of the interior and 

exterior structures of buildings is required [67-69]. Such equipment are usually fixed in one 

position and rotate to obtain 3D point cloud data of the surrounding environment. Despite 

their accuracy advantages, TLS equipment has some drawbacks, including lengthy setup 

times and complex data processing requirements. Additionally, they are non-portable and 485 

relatively expensive. Handheld laser scanning (HLS) is renowned for its portability and 

flexibility, making it suitable for scanning of small-scale spaces [42]. However, the accuracy 

of handheld equipment can be constrained by the stability of the operator's hand, and may not 

be practical for scanning large areas. From a cost perspective, HLS equipment is economical 

for smaller projects with limited budgets. 490 

Mobile scanning systems (MSS) integrate vehicles with laser scanning technology to 
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collect large amounts of 3D point cloud data while in motion, making MSS ideal for scanning 

urban infrastructure, roads, and outdoor spaces [27]. MSS is highly efficient and offers wide 

coverage area, but is also costly. UAV-based scanning systems (USS) are particularly 

suitable for areas that are difficult to access or present hazardous conditions [26]. USS can 495 

scan large areas of terrain and buildings from high altitudes, providing comprehensive data 

coverage while being portable. However, their performance is significantly impacted by 

weather conditions. Robotic scanning systems (RSS) utilize automated robots equipped with 

laser scanning equipment, which can navigate along a predefined path and complete scanning 

tasks [76]. RSS are suitable for hazardous environments or tasks that require repeated 500 

scanning, such as inspections of the internal structures of nuclear power plants. Robotic 

systems can provide stable data collection and minimize human error, but the initial 

investment cost is high and professional technical support may be required. Based on this 

analysis, the selection of data acquisition equipment should align with specific project 

scenarios and constraints at different construction stages, as summarized in Fig. 6. The figure 505 

illustrates the correlations and decision-making between equipment selection, construction 

stages (CDT), and specific scenarios, including factors such as access difficulty, hazard level, 

and environment type (e.g., infrastructure, buildings). 

 
Fig. 6. Decision tree for DAM selection. 510 

4.1.2 Data cleaning and down-sampling 

The inherent complexity of raw 3D point clouds induces computational burdens throughout 

storage and processing pipelines, consequently compromising the integrity of downstream 

processes ranging from reconstruction to the generation of topologically consistent. Within 
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the field of scan-to-BIM processes, effective data cleaning and down-sampling methods are 515 

crucial for enhancing data quality and processing efficiency [30, 32]. 

The presence of noise points and outliers can adversely affect the accuracy of 

subsequent data processing and modeling [111]. Common data cleaning methods include 

statistical filtering, radius filtering, and conditional filtering. Statistical filtering identifies and 

removes noise points by calculating the local density of point cloud data [112], radius 520 

filtering determines and removes outliers based on the neighborhood radius of each point in 

the point cloud [113], and conditional filtering selects data points that meet the requirements 

according to preset conditions [114]. 

Down-sampling is first designed to control the volume and increase uniformity of point 

cloud data, while it well preserves the geometry, thereby enhancing data processing and 525 

storage efficiency [115]. Common down-sampling methods encompass voxel grid down-

sampling, random down-sampling, and uniform down-sampling. Voxel grid down-sampling 

reduces the amount of data by partitioning the point cloud into fixed-size 3D grids and 

retaining a representative point within each grid [84]. Random down-sampling involves the 

random selection of a subset of points from the point cloud, making it suitable for scenarios 530 

with lower accuracy requirements [116]. Uniform down-sampling selects data points at 

regular intervals and is employed for point clouds characterized by large volumes and 

uniform distribution [117]. 

 

4.1.3 Semantic segmentation of scans 535 

Semantic segmentation establishes a comprehensive partitioning of scenes at the semantic 

level by assigning category labels (such as wall, floor, ceiling, etc.) to each point cloud. 

Instance segmentation extends this capability by precisely delineating and distinguishing 

different object instances (such as different chairs or different tables) that share identical 

semantic classifications. In recent years, the rapid advancement of deep learning has led to the 540 

prominence of semantic segmentation based on convolutional neural networks (CNNs), graph 

convolutional networks (GCNs), and other deep learning models. Notable examples include 

models such as PointNet [53], PointNet++ [106], and PointCNN [118]. Additionally, deep 

learning methods based on multi-view representations have also demonstrated substantial 

progress in enhancing the performance of point cloud semantic segmentation. 545 

Instance segmentation is more complex than semantic segmentation because it not only 

needs to identify the category of points, but also needs to distinguish different instances in the 
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same category. Currently, there are two main types of instance segmentation methods: 

grouping-based methods and detection-based methods. Grouping-based methods, such as 

similarity group proposal network (SGPN) [119] and generative shape proposal network 550 

(GSPN) [120], group points of the same instance together by learning the relationship 

between points; while detection-based methods, such as 3D semantic instance segmentation 

(3D-SIS) [121] and VoteNet [122], first detect the bounding box of the instance, and then 

perform instance-level point cloud segmentation. PointGroup [123] and PointRCNN [124] 

significantly improve the accuracy and robustness of segmentation by introducing attention 555 

mechanism and multi-stage detection strategy. Although these methods improve the accuracy 

of instance segmentation to a certain extent, there are still challenges when dealing with 

dense, complex, severely occluded, and dynamic scenes. 

4.1.4 Layout and registration 

The reconstruction of general AEs focuses on extracting and reconstructing the main 560 

structure and layout of the building, such as walls, floors, and ceilings, from 3D point cloud 

data. The matching and registration of detailed BIM objects refine this process to specific 

building components, such as doors, windows, pipes, and furniture. The accuracy and 

efficiency of these two steps directly impact the quality and utility of the final BIM model. 

In terms of general AEs layout reconstruction, traditional methods usually rely on the 565 

extraction and rule matching of geometric features, such as plane detection algorithms, line 

segment detection, and surface fitting techniques to identify and reconstruct basic elements 

such as walls, floors, and ceilings [125, 126]. These methods perform well when dealing with 

simple and regular building structures, but often have limited performance when faced with 

complex and irregular building layouts. In recent years, layout reconstruction methods based 570 

on deep learning have gradually emerged, such as using convolutional neural networks 

(CNNs) and generative adversarial networks (GANs) to automatically extract and reconstruct 

architectural elements [127, 128]. These methods have shown great potential in dealing with 

complex scenes and improving reconstruction accuracy. 

Matching and registration of detailed BIM objects refers to matching specific building 575 

components in point cloud data with predefined BIM object libraries and accurately 

registering them to their actual locations. Traditional matching and registration methods 

mainly include feature-based matching, such as SIFT [129], SURF [130], etc., and 

optimization-based registration, such as ICP [131], GICP [132]. These methods are more 

effective when dealing with simple objects, but the matching accuracy and efficiency will be 580 
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affected when faced with occlusion, noise and complex backgrounds. In order to solve these 

problems, matching and registration methods based on deep learning have emerged in recent 

years, such as using 3D convolutional neural networks and point cloud feature learning 

networks to automatically extract and match high-dimensional features, thereby improving 

the accuracy and robustness of registration [133]. 585 

4.1.5 Software 

This paper reviews several commonly used software and explores their applications and 

advantages in the scan-to-BIM processes, as shown in the Fig. 7. Autodesk ReCap is mainly 

used for data preprocessing of point cloud data, such as data cleaning, noise reduction, and 

preliminary geometry reconstruction [62, 67]. It can be seamlessly integrated with Autodesk 590 

Revit, allowing users to use the processed point cloud data directly in Revit for detailed BIM 

modeling. Revit has powerful parametric modeling capabilities, can efficiently create and edit 

building information models, and supports export in multiple formats, such as IFC and RVT, 

which facilitates data exchange and collaboration with other BIM software [41, 85]. 

 595 

Fig. 7. Decision tree for software selection. 

Blender is an open-source 3D modeling and rendering software with powerful modeling, 

animation, rendering, and visual effects capabilities [63, 134]. Although Blender was not 

originally designed for building information modeling, its flexible plug-in system and 

powerful Python script support enable it to adapt to various point cloud data processing and 600 

BIM authoring needs. Blender's point cloud processing plug-ins, such as BlenderGIS and 

Point Cloud Visualizer, can help users import, visualize, and process point cloud data. 
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Through compatible plug-ins with other BIM software, Blender can export files in multiple 

formats, such as OBJ, FBX, and IFC, which facilitates data exchange and collaboration with 

other BIM software. 605 

Bentley Systems' ContextCapture and MicroStation are also commonly used 3D 

reconstruction software. ContextCapture generates high-precision 3D models through 

photogrammetry technology, which is suitable for data processing of large-scale and complex 

building scenes [27, 74]. The created model can be imported into MicroStation for further 

BIM modeling and editing. MicroStation has powerful 3D modeling and data management 610 

capabilities, supports the import and export of multiple file formats, such as DGN and IFC, 

and is suitable for the data exchange and collaboration needs of complex engineering 

projects. Trimble's RealWorks [61] provides a variety of point cloud processing functions, 

such as point cloud stitching, cleaning, and classification, and can efficiently process large-

scale point cloud data. SketchUp is widely popular among users for its easy-to-use interface 615 

and powerful modeling functions. Through plug-ins, SketchUp can exchange data with other 

BIM software, such as exporting to IFC file format. 

 

4.2 Guidelines for adopting scan-to-BIM processes 

Based on the preceding analysis and the 58 cases examined in this review, we have 620 

summarized the guidelines for automated scan-to-BIM processes, which are organized into 

four key steps as shown in Fig. 8. 

 
Fig. 8. Four-step guidelines for choosing appropriate scan-to-BIM processes. 

 625 

Step 1: The first step is determining the data acquisition method. The implementation of 



25 

 

the automated scan-to-BIM process requires the selection of appropriate equipment to acquire 

3D point cloud data from the real world. In the construction stage, some scenes are difficult 

to access or hazardous, so robotic scanning systems or UAV-based scanning systems can be 

appropriate. Robotic scanning systems is suitable for dangerous environments or tasks that 630 

require repeated scanning, and robotic scanning systems can navigate along a predefined path 

[76]. UAV-based scanning can scan large areas of terrain and buildings from high altitudes 

[26], but is greatly affected by weather conditions. 

During the O&M stage, robotic scanning systems is suitable for difficult-to-access or 

dangerous scenarios, otherwise (noted as “o.w.”) handheld laser scanner or mobile scanning 635 

systems can be selected. Handheld laser scanners are known for its portability and flexibility, 

and is suitable for scanning small-scale spaces [42]. Mobile scanning systems can collect 

large amounts of 3D point cloud data while on the move, making it ideal for scanning urban 

infrastructure, roads, and a wide range of outdoor spaces [27]. For the remaining stages, such 

as CHB, it can be selected between terrestrial laser scanners, handheld laser scanners, or 640 

UAV-based scanning systems, to ensure efficient and accurate data collection. TLS provide 

high measurement accuracy and resolution, and are particularly suitable for scenarios that 

require detailed recording of the internal and external structures of buildings [67-69]. 

However, terrestrial laser scanners lack portability and require extended data collection times. 

 645 

Fig. 9. Decision tree for data storage selection. 

Fig. 9. shows the decision tree for data storage selection at various CDT stages. During 

the construction stage, the primary data to be processed is BIM model, which are typically 

stored in the cloud to facilitate collaboration and access. In the O&M stage, the data to be 
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managed are predominantly 3D point cloud data, which are large and needs to be accessed 650 

quickly, so local storage is usually selected. For other works, the data handled are multi-

modal, including images, videos, and sensor data, which require flexible storage solutions to 

meet the diverse needs of different projects. 

Step 2: The next step involves selecting suitable algorithms for data processing. The 

detailed data processing workflow includes data cleaning and down-sampling, semantic 655 

segmentation of scans, and layout and registration, as discussed in detail in Sections 4.1.2–

4.1.4. Raw 3D point cloud data often contains noise, outliers, and redundant information, 

which not only increases the costs of data storage and processing, but also negative impacts 

on subsequent model construction and analysis. Therefore, applying effective data cleaning 

and down-sampling during the scan-to-BIM process is essential for ensuring data quality and 660 

processing efficiency [30, 32]. 

The automation of scan-to-BIM is closely associated with semantic enrichment. 

Semantic segmentation aims to classify each point into a specific category (e.g., walls or 

windows), while instance segmentation further distinguishes between different instances 

within the same category (e.g., different chairs). The rapid advancement of deep learning 665 

techniques in recent years has facilitated the widespread adoption of semantic segmentation 

methods utilizing deep learning models, such as CNNs [53, 106] and GCNs [30]. 

Retrieval‑augmented generation (RAG)‑based segmentation has emerged as a promising 

approach, leveraging external knowledge retrieval to enhance segmentation performance 

[134, 135]. 670 

Traditional layout and registration methods rely on the extraction of geometric features 

for rule-based matching. Examples include plane detection algorithms, line segment 

identification, and surface fitting techniques [125, 126]. In recent years, deep learning-based 

layout methods have gradually emerged, for instance, application of GANs to automatically 

extract and reconstruct architectural elements [127, 128]. Registration refers to matching 675 

specific building components in the point cloud data with predefined BIM object libraries. 

Commonly algorithms for registration include ICP [131] and SIFT [129]. These 

advancements contribute to increased precision and efficiency in Scan-to-BIM processes. 

Step 3: The third step involves selecting appropriate data processing software and 

storing the results. During the data preprocessing stage, commonly used commercial software 680 

includes Autodesk ReCap and ContextCapture, while frequently utilized open-source 

software comprises CloudCompare and Blender. These software tools are primarily 
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employed for point cloud data cleaning, noise reduction, and preliminary geometric 

reconstruction [62, 67]. 

In the BIM modeling stage, commonly used commercial software includes Autodesk 685 

Revit and SketchUp. These software packages possess parametric modeling capabilities, 

which allow for the efficient creation and editing of BIM. They also support exporting in 

multiple formats, facilitating collaboration with other BIM software [41, 85]. Additionally, 

the open-source software Blender is equipped with modeling and rendering capabilities. It 

can adapt to various point cloud data processing and BIM modeling requirements through its 690 

flexible plugin system and robust support from Python scripting [63, 136]. 

Step 4: The final step involves applying the results for further utilization. During the 

construction phase, Scan-to-BIM is suitable for scenarios such as verification and 

deformation monitoring [41, 86]. In the O&M phase, digital twin technology based on Scan-

to-BIM can reduce material waste and rework, thereby saving costs and time. In the field of 695 

infrastructure, Scan-to-BIM is primarily used for the digital modeling and management of 

large structures such as bridges [63, 101] and tunnels [47]. For infrastructure like bridges, 

researchers have proposed an integrated Scan-to-BIM-to-Sim framework to support structural 

performance analysis and evaluation [137]. In addition, point cloud completion techniques 

are being explored to further improve the integrity and precision of model reconstruction 700 

[138]. In the context of historic building preservation, Scan-to-BIM is employed for 

documentation and analysis. By integrating various databases, it supports the conservation, 

management, and restoration of cultural heritage [52, 99, 110]. At the stage of building 

demolition, the coupling of Scan-to-BIM data and robotics enables the automated sequencing 

of reinforced concrete structure disassembly, thereby supporting the sustainable reuse of 705 

components [139].  

 

5. Conclusion 

BIM is a crucial digital asset for enhancing the digitization level of AEC, and automated 

scan-to-BIM offer an effective system of obtaining as-built BIM. This paper summaries a 710 

conceptual model to demonstrate the current status and development trajectory of automated 

scan-to-BIM processes, based on the systematic analysis of 58 real cases. Terrestrial laser 

scanning is identified as the most prevalent method for collecting 3D point clouds, and there 

is a growing trend towards the use of deep learning-based methods for the semantic 

segmentation of 3D point clouds. However, point cloud data quality remains a significant 715 
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bottleneck in practice, particularly in complex, occluded, and dynamic environments. The 

generalizability of deep learning across different architectural styles and construction 

environments needs further validations. Commercial software offers comprehensive functions 

and professional technical support, whereas open-source software provides flexibility and 

customizability. Automated scan-to-BIM serves not only as a bridge connecting the physical 720 

and digital worlds but also as a significant driving force for the development and application 

of construction management. 

Guidelines has been developed to assist future practitioners in selecting and 

implementing appropriate automated scan-to-BIM processes, thereby maximizing their 

capabilities in AEC. The guidelines encompass four main steps: (1) Determining the data 725 

acquisition equipment, interested target, and information storage plan; (2) Determining which 

algorithm should be utilized; (3) Choosing appropriate data processing software and storing 

the results; and (4) Applying results in further utilization. These steps have been 

demonstrated to be effective in actual applications in construction projects. 

Future research is recommended to focus on five key directions as follows. (1) More 730 

infrastructure scenes can be included in the applications of Scan-to-BIM. For large‑scale 

infrastructure, it would be beneficial to enhance 3D point clouds with satellite or terrestrial 

Interferometric Synthetic Aperture Radar (InSAR) sensing to enable millimeter-accurate 

structural health analysis for bridges, tunnels, and dams. (2) Multi-source sensing data fusion 

can enable novel scan-to-BIM applications. For example, high‑definition imagery can 735 

supplement 3D point cloud for small building elements, such as fire sprinklers, while 

ground‑penetrating radar can detect subsurface concrete details. Open accessible benchmark 

datasets can boost the reproducibility and trustworthiness of scan-to-BIM research findings to 

impact the industry. (3) In semantic segmentation, emerging generative AI methods may 

open new opportunities for 3D point cloud segmentation in several ways, e.g., improving the 740 

automated data cleaning of incomplete or noisy 3D points of openings and glass and 

retrieval-augmented generation (RAG) segmentation. (4) For BIM ecosystems, a 

diversification of BIM authoring and analytic tools, e.g., OpenBIM and localized BIM 

beyond existing mainstream platforms, can better align with local technical standards and 

cultural-economic contexts, for BIM resilience in a dynamic world. (5) Researchers are 745 

suggested to push the boundaries of CDT in applying novel simulation and reasoning for 

responding to global climate shocks and extreme weathers to buildings and infrastructure, 

and in energy efficiency in operational stage of buildings for lower carbon footprints. 
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This paper addresses a significant knowledge gap in the application of automated scan-

to-BIM, by reviewing the status quo of technological areas, active development trends, 750 

practical guidelines, and future directions. The applicability of the automated scan-to-BIM 

guidelines is recommended in a broader range of construction scenarios, particularly 

infrastructure projects. From a long-term perspective, automated scan-to-BIM is not a one-off 

task, but a promising knowledge base for digital transformation and value cocreations in off-

site construction, operations and maintenance, and demolition stages. 755 
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