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Abstract

The global Architecture, Engineering, and Construction (AEC) industry has witnessed
surging demand for Construction Digital Transformation (CDT) over the past decade. Scan-
to-BIM delivers accurate as-is conditions and reconstructs detailed BIM for diverse CDT
applications. Researchers have proposed automated scan-to-BIM using algorithms and Al to
minimize labor demands, but a comprehensive review with systematic guidelines is lacking.
This paper presents a conceptual model of scan-to-BIM processes and reviews development
patterns and trends based on 58 cases. Based on the model, this paper offers a four-step
guideline for AEC practitioners to adopt automated scan-to-BIM effectively. The
contribution of this paper is three-fold. First, the conceptual model offers a comprehensive
and simplified overview of scan-to-BIM processes for beginners. Secondly, trends emerge,

e.g., transformation from rigid rules to Al methods. Thirdly, the best-practice guidelines

empower AEC practitioners to maximize scan-to-BIM advantages tailored to their needs.
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1 Introduction

The Architecture, Engineering, and Construction (AEC) is a pillar industry in almost every
nation’s economy, and occupies a central position in global sustainable development [1, 2].
Construction Digital Transformation (CDT) is pivotal to the development of the AEC
industry [3, 4]. The core of CDT lies in integrating digital technologies throughout the entire
lifecycle of construction projects, aiming to enhance efficiency, enhance sustainability and
increase resilience, thereby advancing the United Nations Sustainable Development Goals
(SDGs) [5]. CDT encompasses the key stages of design, construction, operation, and
maintenance, each stage relying on advanced technologies such as Building Information
Modeling (BIM), the Internet of Things (IoT), and Artificial Intelligence (Al) to optimize
processes, while BIM provides comprehensive services throughout the entire lifecycle [6].
With its increasing success and deep use, such as BIM Level 2/3 in the UK [7], over 20
mandatory BIM uses in Hong Kong [8], and ‘positive design’ in mainland China, BIM has
demonstrated significant advancements. Among the top BIM uses, scan-to-BIM has become
essential, as highlighted by the Hong Kong Construction Industry Council (HKCIC), which
lists it among the 6 most popular BIM uses [9].

Despite these advancements, there are often many deviations between the as-designed
BIM and the as-built BIM, which poses challenges to the operation and maintenance of
buildings. Technical barriers stem from manual operations in traditional scan-to-BIM, which
are prone to errors and labor-intensive. Findings show that 60% of a building’s lifecycle costs
focus on the operation phase, but manually creation of as-built BIM can delay maintenance
[10].The creation and application of as-built BIM models has gradually become a research
hotspot [6, 11, 12]. Scan-to-BIM is the main method for obtaining as-built BIM, which can
provide digital assets for the construction, maintenance of buildings [13-15]. During the
construction phase, scan-to-BIM can be used for progress monitoring and quality inspection
to ensure that the construction process proceeds as planned [16]. During the maintenance
phases, scan-to-BIM can provide detailed building information to support facility
management (FM) and maintenance [17, 18].

Scan-to-BIM involves acquiring the current building data through light detection and
ranging (LiDAR) or other 3D capture technologies, and then converting the data into a digital
BIM model [6]. Traditional scan-to-BIM relies on manual operations by engineers, which is
often time-consuming and labor-intensive, and prone to human errors. With the development

of artificial intelligence, these manual tasks can be gradually completed automatically by
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computers [19, 20]. Ideal automated scan-to-BIM involves the automation of data collection
and data processing. Based on the automatic semantic segmentation and clustering of 3D
point clouds, automatic object detection can be achieved by combining spatial relationships,
and then BIM can be automatically obtained using parametric algorithms [21]. Due to
extensive research efforts, the application scenarios of automated scan-to-BIM processes are
also constantly expanding, covering many fields such as historical building protection [22-
24], urban planning [25, 26], and construction progress monitoring [27].

Automated scan-to-BIM is a complex but demanded task. The initial stage of this
process involves the collection of 3D point cloud data, which can capture high-precision 3D
representations of buildings or construction sites [28, 29]. Although the raw data points are
dense and rich in geometric information, they also contain a lot of noise and redundant
information. Consequently, data cleaning and down-sampling form a critical step [30-32].
Data cleaning aims to remove noise, erroneous points and redundant data to ensure the
accuracy and efficiency of subsequent processing [33, 34]. Down-sampling regularizes the
density of point cloud data and reduces the amount of data while maintaining the geometric
structure [31]. Then, semantic segmentation is conducted to identify various architectural
elements and structures from 3D point clouds, thereby enriching the model with semantic
information, and adding to the geometric data [35-37]. The final stage involves converting
the processed 3D point clouds into a BIM model through parametric modeling, along with
model layout and registration [6, 38].

Many general architectural elements, such as walls, floors, or ceilings, equip with
vertical or horizontal extrusions from regular 2D shapes. Rule-based methods, therefore, can
extract the vertical or horizontal geometries and topological information from 3D point
clouds using algorithms like random sample consensus (RANSAC) or geometric hashing.
RANSAC searches for the minimum bounding box of a point cloud to infer the shape of the
object [39], while geometric hashing generates lines or surfaces from the point cloud
distribution to determine object shapes [40]. Although rule-based methods have high
classification performance for defined elements [41], they have great limitations for objects
with special structures, such as chairs or tables [42]. Occlusion during the scanning process
poses additional challenges for extracting information from 3D point clouds [43, 44].
Semantic segmentation based on deep learning can extract information from point clouds
where various objects coexist, effectively making up for the shortcomings of rule-based

methods [45-47]. 3D point cloud semantic segmentation, as a core step in automation, faces
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challenges such as reliance on large-scale training data, difficulty in handling complex
structures (such as irregular building elements), and occlusion problems.

Existing reviews and surveys on scan-to-BIM in the literature have primarily focused on
specific aspects of the technology, including its principles, methods, and typical applications.
Volk et al. [48] analyzed the Scan-to-BIM applications for existing buildings. Rashdi et al.
[49] focused on the impact of scanning technologies such as LiIDAR and oblique photography
on Scan-to-BIM. Bassiere et al. [50] reviewed the existing methods for reconstructing BIM
walls in an unsupervised manner. In addition, case studies mainly focus of existing research
[51], such as rule-based scan-to-BIM method [41], and the scan-to-BIM workflow for
cultural heritage [52]. However, there is still a significant gap in the comprehensive
understanding of the automation processes involved in scan-to-BIM, especially the
integration of advanced artificial intelligence (Al) technologies and the optimization of the
scan-to-BIM process. Existing literature often lacks a detailed comparative analysis of the
latest automation methods, including their advantages, limitations, and practical
implementation challenges. In practice, AEC practitioners lack clear guidelines, which
hinders the selection of suitable technologies for project scenarios and leads to inefficient
resource use.

This paper aims to address three research questions as follows: (1) What are the core
components, technical approaches, and their interrelationships in automated scan-to-BIM? (2)
What are the recent trends and research hotspots in automated scan-to-BIM? (3) How can
best-practice guidelines be formulated to accommodate varied applications and project
requirements? In order to answer these questions, this paper aims to comprehensively review
the latest advances in automated scan-to-BIM. A conceptual model is proposed to provide a
comprehensive and abstract overview of the scan-to-BIM process for newcomers. Then, a
technological analysis summarizes recent trends, such as a paradigm shift from rigid decision
rules to artificial intelligence approaches. Finally, this paper compiles best practice guidelines
that enable AEC practitioners to benefit the most from adopting scan-to-BIM processes based
on the given work scenario and application needs. The rest of the paper consists of four
sections. Section 2 introduces the research methodology, Section 3 compares the automated
scan-to-BIM processes, and Section 4 gives guidance for selecting a suitable automated scan-

to-BIM processes. Section 5 is the conclusion of this review.



2. Research methods
This study employed an archival study framework comprising five steps: (1) Development of
130 conceptual model; (2) Literature collection and case interpretation; (3) Bibliometric analysis;
(4) Comparative evaluation of different technologies; and (5) Compilation of the best-
practice guideline.
2.1 Conceptual model
Fig. 1 shows the generalized conceptual model of automated scan-to-BIM workflow to
135 elucidate the research objectives and provide supporting materials for the guideline. This
conceptual model comprises five interrelated components: (1) data acquisition method, (2)
data processing and semantic enrichment, (3) general architectural elements (AEs) and

detailed BIM objects, (4) software, and (5) CDT stage.
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140 Fig. 1. Guiding conceptual model of scan-to-BIM.

The data collection of 3D point cloud data is realized through the use of LIDAR
technology. The LiDAR system calculates the distance of the target object by emitting laser
pulses and measuring their return time, thereby generating accurate 3D coordinates. LIDAR
can be fixed on different mobile platforms such as unmanned aerial vehicles (UAVs) and

145 robots, or can be utilized as handheld equipment for data collection. Given the substantial
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volume of 3D point clouds, it is necessary to process the raw data with data cleaning and
down-sampling. The semantic information of the 3D point clouds needs to be obtained, and
deep learning-based algorithms have proven to be effective for the automated processing of
semantic enrichment.

Geometric representations of general AEs, such as walls, floors, and beams, can be
generated using plane fitting or surface fitting techniques. However, for architectural
elements with complex structures, such as chairs, sofas, and tables, the processes of surface
fitting and parametric modeling can be time-consuming and cumbersome. To address this,
registration is employed to match the 3D point cloud data with the BIM model. This involves
using sampling algorithms to generate 3D point cloud data from the surface of the BIM
model. Common sampling methods include uniform sampling, random sampling and
curvature-based sampling. Subsequently, feature extraction and comparison are performed to
obtain accurate BIM models of architectural elements with intricate structures through point
cloud registration. The components within the conceptual model can be further categorized
by different classifications, as illustrated in Table 1.

Table 1. Descriptors of five components of scan-to-BIM conceptual model.

Component Descriptor Code Examples
Scene Infrastructure Infra. Bridges, Tunnels
Buildings Bldgs. Apartment Building, Office
Data acquisition Handheld Laser Scanners HLS Geosys PX-80
method Terrestrial Laser Scanners TLS Faro Focus 3D X 130
Mobile Scanning Systems MSS Nav-Vis M6
UAV-based Scanning Systems USS DIJI Phantom Four
Robotic Scanning Systems RSS Boston Dynamics BigDog
Established dataset ED S3DIS
Semantic Handcrafted Annotation HA -
segmentation of scans  Rule-based RB -
Traditional Machine Learning TML HDBSCAN
Deep learning DL PointNet
BIM Software Commercial Comm. Autodesk Revit
Open Open Blender
CDT stage Construction Const. -
Operation and maintenance o&M -
Conservation of historical buildings CHB -

Data acquisition method encompasses handheld equipment, mobile systems, UAV-based
platforms, robot-based systems, and terrestrial laser scanning (TSL). A significant challenge
impeding the automation of the scan-to-BIM process is the semantic segmentation of 3D
point clouds. Although algorithms such as PointNet [53] and Mask3D [45] have
demonstrated commendable performance on public datasets, the software-assisted acquisition
of semantic information from 3D point clouds remains a prevalent method in contemporary
research. The use of software significantly enhances the automation capabilities of the scan-
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to-BIM process. Commonly utilized commercial software includes Autodesk Revit, Autodesk
Recap, and Trimble RealWorks, whereas open-source platforms include Blender and
CloudCompare. Current research primarily focuses on the application of automated scan-to-
BIM in infrastructure, industrial facilities, and urban architecture. Additionally, these
applications involve the preservation of historical buildings, as well as the construction
management and maintenance of existing buildings

2.2 Literature collection

Based on the criteria provided by the preferred reporting items for systematic reviews and
meta-analyses (PRISMA), a literature search was conducted using the keywords mentioned in
the conceptual model. The databases used for the literature search included Web of Science,
Google Scholar, and Scopus database. The search strategy of this study covers popular
algorithms involved in Al by focusing on keywords such as semantic segmentation and point
cloud classification. The query strings were "scan-to-BIM" ("Scans to Parametric BIM*" OR
"Scan-vs-BIM") AND "Point Cloud Modelling" ("3D laser scanning*" OR "Scanning
Technologies*" OR "LiDAR") OR "3D point clouds classification" ("Semantic
Segmentation*" OR "Instance segmentation") OR "artificial intelligence" ( "deep learning*"
OR "machine learning"). The search results of this review covered journal and conference
papers, books, dissertations, and reports published in recent years, but did not include patents
and legal cases. The screening and data extraction for this review were performed
independently by two researchers to reduce the risk of human error and subjective bias. The
search period was from 2015.01 to 2025.08, and the search language was English.

The initial search yielded 812 articles, and initial screening was performed by examining
titles, abstracts and keywords, which resulted in 369 articles. Studies not related to the AEC
industry, such as agriculture or medicine, were excluded. All articles were subjected to full-
text screening based on specific eligibility criteria. The criteria were (1) original research
contributions rather than literature reviews, and (2) incorporation of automated scan-to-BIM
into practical applications within the AEC industry, described in sufficient detail in the
literature. The automated scan-to-BIM within 58 publications were analyzed, guided by the
conceptual model, and data were extracted using the basic information of the selected
empirical studies presented in Table 1 to produce Table 2.

Table 2. List of 58 actual cases of automating scan-to-BIM.

Data Semantic

No.  Reference Year Scene acquisition segmentation BIM CDT
Software stage

method of scans
1 Mahmoud et al. [55] 2025 Bldgs. HLS DL Comm. 0&M
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2 Luo et al. [56] 2025 Infra.  USS RB Comm. O&M
3 Elsharkawi et al. [57] 2025 Bldgs. Multi DL Comm. o&M
4 Patil et al. [58] 2025 Bldgs. ED DL Open O&M
5 Liu et al. [59] 2025 Bldgs. MSS DL Open O&M
6 Ma et al. [51] 2025 Bldgs. ED DL Comm. O&M
7 Kang et al. [60] 2025 Bldgs. USS DL Comm. O&M
8 Elsharkawi et al. [57] 2025 Bldgs. USS HA Comm. Const.
9 Chen et al. [42] 2024 Bldgs. HLS TML Open O&M
10 Cho et al. [61] 2024 Bldgs. Multi HA Comm. O&M
11 Rocha et al. [62] 2024 Bldgs. USS HA Comm. CHB

12 Yang et al. [63] 2024 Infra.  Multi TML Multi O&M
13 Mahmoud et al. [54] 2024 Bldgs. MSS DL Comm. O&M
14 Pan et al. [64] 2024 Bldgs. Multi DL Comm. CHB

15 Pepe et al. [65] 2024 Bldgs. HLS HA Open CHB

16 Wang et al. [66] 2024 Bldgs. TLS DL Comm. O&M
17 Rocha et al. [67] 2024 Bldgs. Multi HA Comm. CHB

18 Birkeland et al. [68] 2024 Bldgs. TLS DL Comm. O&M
19 Zhu et al. [69] 2024 Bldgs. TLS DL Comm. O&M
20 Kellner et al. [32] 2023 Bldgs. TLS DL Multi O&M
21 Kim et al. [70] 2023 Infra. ED DL Multi O&M
22 Stanga et al. [71] 2023 Infra.  Multi DL Multi CHB

23 Aftab et al. [72] 2023 Bldgs. TLS HA Comm. o&M
24 Jarzabek et al. [73] 2023 Bldgs. TLS HA Open o&M
25 Abreu et al. [74] 2023 Bldgs. TLS HA Open o&M
26 Martens et al. [75] 2023 Bldgs. TLS RB Multi o&M
27 Hu et al. [76] 2023 Bldgs. RSS DL Multi Const.
28 Kim et al. [77] 2023 Bldgs. TLS DL Comm. O&M
29 Croce et al. [78] 2023 Infra. TLS TML Comm. CHB

30 Xie et al. [79] 2023 Bldgs. TLS DL Comm. O&M
31 Campagnolo et al. [80] 2023 Bldgs. ED DL Comm. CHB

32 Wang et al. [81] 2022 Bldgs. ED DL Multi O&M
33 Park et al. [47] 2022 Infra. TLS DL Multi O&M
34 Pan et al. [82] 2022 Bldgs. TLS DL Comm. O&M
35 Ma et al. [83] 2022 Bldgs. TLS TML Multi O&M
36 Qiu et al. [31] 2022 Bldgs. TLS RB Multi O&M
37 Truong et al. [84] 2022 Bldgs. TLS RB Comm. Const.
38 Geyter et al. [85] 2022 Bldgs. Multi DL Comm. o&M
39 Perez et al. [86] 2021 Bldgs. ED DL Multi Const.
40 Kang et al. [41] 2020 Bldgs. Multi RB Comm. Const.
41 Andriasyan et al. [87] 2020 Bldgs. TLS RB Multi CHB

42 Ma et al. [88] 2024 Bldgs. ED DL Comm. O0&M
43 Nieto-Julian et al. [89] 2024 Bldgs. Multi TML Comm. CHB

44 Cai et al. [90] 2024 Bldgs. ED DL Comm. Const.
45 Bosché et al. [91] 2015 Bldgs. TLS HA Comm. Const.
46 Barazzetti et al. [92] 2016 Infra. TLS HA Multi CHB

47 Laefer et al. [93] 2017 Bldgs. TLS TML Comm. o&M
48 Macher et al. [94] 2017 Bldgs. TLS RB Multi o&M
49 Adan et al. [95] 2018 Bldgs. Multi RB Open o&M
50 Wang et al. [96] 2018 Bldgs. TLS HA Open Const.
51 Wang et al. [14] 2019 Bldgs. TLS HA Open O0&M
52 Capone et al. [97] 2019 Bldgs. Multi HA Comm. CHB

53 Mellado et al. [98] 2019 Bldgs. Multi HA Multi O0&M
54 Rocha et al. [33] 2020 Bldgs. Multi HA Multi CHB

55 Pepe et al. [99] 2020 Infra. TLS HA Multi CHB

56 Croce et al. [100] 2021 Bldgs. TLS TML Multi CHB

57 Pepe et al. [99] 2021 Bldgs. Multi HA Multi CHB

58 Perez et al. [36] 2021 Bldgs. TLS TML Comm. O&M
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Data acquisition method (DAM), software used, semantic enrichment methods, research
scenarios, and applications were coded for each article. For instance, Mahmoud et al. [54]
collected 3D point cloud data of indoor scenes using a mobile platform (Nav-Vis M6),
performed down-sampling, and applied plane detection based on RANSAC to identify room
boundary segments. They conducted semantic segmentation of the 3D point clouds using the
RandLA-Net algorithm. The dataset utilized was S3DIS, and the Dynamo plug-in was
integrated with Autodesk Revit software to implement the BIM parametric algorithm for
automatic 3D model reconstruction, thus providing a technical basis for the application of
smart cities and digital twins.

2.3 Bibliometric analysis

This paper uses bibliometric analysis to quantitatively analyze the structure and dynamics of
current academic research, through keyword co-occurrence, and cluster-based topic analysis.
These methods systematically reveal the research trends and hotspots within a specific field,
providing researchers with a comprehensive perspective. The keywords in an article are a
highly condensed summary of the research content. By drawing a knowledge domain map of
the literature's keywords, the focus and potential development trajectory of current scan-to-
BIM processes can be intuitively displayed. Cluster-based topic analysis can divide a large
number of documents into several topic groups, helping researchers understand the main
directions of the scan-to-BIM processes and their interrelationships, and facilitating the
discovery of potential research gaps and future research trends.

Based on the literature collection in section 2.2, this review utilizes CiteSpace software
to calculate the co-occurrence frequency among keywords, thereby obtaining the co-
occurrence matrix and constructing the keyword co-occurrence network. The nodes in the
network represent keywords, and the edges represent the co-occurrence relationship between
these keywords, with the edge weights typically corresponding to the co-occurrence
frequencies. Based on the keyword co-occurrence network map, K-means clustering is used
to divide the keywords into several topics according to their co-occurrence relationships. This
approach allows for the analysis of the characteristics of each theme, thereby revealing the
foundational of current scan-to-BIM process and providing direction for future studies.

Through the above-mentioned bibliometric analysis, this review can provide theoretical
guidance for AEC practitioners, clarify research topics, and enhance efficiency and

effectiveness in practical work.
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2.4 Technological analysis

Based on technological analysis, this paper explores the various technical methods and their
applications involved in automated scan-to-BIM processes, which can reveal the current
development and cutting-edge trends. Technological analysis can help researchers and
practitioners understand the advantages and limitations of various technical approaches,
providing a scientific basis for technology selection and optimization. We conduct a
systematic technical analysis from the dimensions of research trends and data collection, data
cleaning and down-sampling, semantic segmentation of scans, layout and registration, and
BIM software.

Before data collection, equipment evaluation is essential to select appropriate equipment
that meet the project requirements. The evaluation involves candidate scanning equipment’s
characteristics across multiple dimensions, such as scanning range, portability, as well as
storage and processing costs. During data collection, data quality control on completeness,
density, uniformity, and geometric accuracy has to be maintained [28]. Data cleaning and
down-sampling can further enhance point data quality (e.g., better uniformity) and processing
efficiency, which also save storage and processing costs. Methods such as statistical filtering,
radius filtering, and conditional filtering are employed for data cleaning, while voxel grid,
random, and uniform methods are used for data down-sampling. These techniques ensure the
efficiency of subsequent model construction and analysis. Semantic segmentation of scans
helps to identify and distinguish categories of 3D point clouds. Commonly used semantic
segmentation methods include deep learning models such as convolutional neural networks
(CNNs) and graph convolutional networks (GCNs). The operations of layout and registration
are essential to match specific BIM objects. Analysis of BIM software can determine the
suitable tools for the scan-to-BIM process, by assessing the functionality, compatibility, and
user-friendliness of the software, we can ensure the efficiency and accuracy of data
processing and BIM modeling.

Technical analysis provides the basis for the compilation of the best-practice guideline.
Through these analyses, it is possible to ensure the selection of the appropriate technical
solutions during the implementation of scan-to-BIM processes, thereby enhancing the
efficiency and accuracy of data acquisition, processing, and modeling.

2.5 Compilation of the best-practice guideline
Constructing a standardized and adaptable set of best-practice guideline for automated scan-

to-BIM, which can help solve the problem of technology fragmentation in the AEC industry,
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and improve automation efficiency. The development of compiling such a guide requires the
division of steps, the necessity of each step, the target users, and the final deliverable format.

The first step in developing the guide is to conduct a needs analysis and scope definition.
The purpose of this step is to identify pain points in the existing workflows, such as data
acquisition method and software incompatibility issues in the automated scan-to-BIM
process. Clear objectives and boundaries ensure that the development of the guide is well-
targeted. The subsequent step involves literature review and benchmark analysis, which
integrates mature methods from academic research and case studies to establish an evidence-
based recommendation framework. This step can provide a foundation for drafting the guide.
During the drafting phase, it is essential to translate consensus into actionable steps. Through
actual project testing and iterative optimization of the guidelines, it is possible to identify and
correct any deficiencies, ensuring the guide's feasibility and practicality.

The target users of the guide include project managers, software developers, and
researchers. The final deliverable format of the guide should be an instruction document,
which includes a decision tree for user selection and the necessary textual descriptions.
Finally, the disclaimer of the guide is that the guidelines proposed in this review are only
suggestions and need to be adjusted according to project constraints. The authors are not
responsible for errors resulting from misuse or tool deficiencies, and users are required to

independently verify compliance with local regulations.

3. Analytical results

Based on a systematic analysis of practical cases, this section employed Sankey diagram
visualization and bibliometric methods. Building on this, the distribution characteristics of
current automated Scan-to-BIM across different dimensions are revealed. By identifying a
significant paradigm shift in the field from traditional rule-driven approaches to Al-driven
approaches, this analysis provided an empirical basis for subsequent technical analysis and
the development of practical guidelines.

3.1 Selection patterns of automated scan-to-BIM system

An overview of the 58 automated scan-to-BIM projects is presented in the form of a Sankey
diagram in Fig. 2. The five main components of the conceptual model are shown from left to
right, namely, scene, data acquisition method, semantic segmentation of scans, BIM software,

and construction digital transformation (CDT) stage.
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Fig. 2. Sankey chart of automated scan-to-BIM.

In the Sankey chart diagram, the size of the rectangle indicates the number of cases
involving different labels, and the curved "flow" between components represent the
frequency of co-occurrence in the 58 cases. Analysis of Table 2 and Fig. 2 reveals that the
selection mode of the automated scan-to-BIM system can be summarized as follows:

(1) The current scan-to-BIM case scenarios are mainly (50 out of 58) focused on the
exterior or interior structure of buildings. Since there are often differences between the design
model and the as-build BIM, by capturing detailed geometric information of indoor MEP [79,
81] and air-conditioning and mechanical ventilation (ACMYV) [42], it can better support the
operation and management of buildings. Scan-to-BIM technology in the infrastructure field is
mainly used for digital modeling and management of large structures such as bridges [63,
101] and tunnels [47]. Some infrastructure, such as the Toppoli Bridge [102], also belongs to
the category of historical buildings. Based on scan-to-BIM, not only the geometric
information of the building is preserved, but also detailed data such as materials, structure
and decoration can be included, providing a scientific basis for restoration and maintenance
work [25, 71, 103, 104].

Apart from the on-site collection of 3D point clouds, commonly used established
datasets include Stanford Large-Scale 3D Indoor Spaces (S3DIS) [89] and ModelNet40
[105]. The S3DIS dataset is a large-scale 3D indoor space dataset created by Stanford

12



University. This dataset comprises 3D scan data collected from six different buildings,
covering various indoor scenes such as offices, conference rooms, and hallways. ModelNet40
is a widely-used 3D CAD model dataset created by Princeton University, which contains 3D
object models from 40 different categories.

(2) Terrestrial laser scanning (TLS) is the most prevalent method for 3D point cloud
acquisition, featuring in nearly half (26 out of 58) of the cases. TLS is usually mounted on a
tripod, and is favored for its high accuracy and density. Common models include the Leica
RTC360 [31, 66] and the Faro Focus3D S120 [62, 67]. Handheld laser scanning (HLS) is
lightweight and easy to carry, allow operators to directly hold the equipment for scanning
[42]. Mobile scanning systems (MSS), installed on vehicles, ships, or other mobile platforms,
can continuously collect 3D point cloud data while moving [27]. In addition, based on drones
[26, 61, 62] or robots [76], through pre-programmed paths or autonomous navigation
functions, can perform 3D laser scanning tasks in special scenarios. The drone- and robot-
borne methods are particularly suited for rapid scanning of large areas, as well as hard-to-
reach or hazardous locations.

However, LiDAR point cloud acquisition of small, openings or glass objects faces
inherent limitations. Limited spatial resolution of lasers, particularly for distant objects,
results in incomplete capture of small objects like fire sprinklers; Transparent and reflective
surfaces can cause laser signal loss or scattering, and leads to voids or noises in the point
cloud, respectively. Utilizing multiple data acquisition equipment or methods can mitigate
these constraints by reducing coverage gaps and measurement errors in the literature. The
inclusion of high-definition imagery, for example, can enhance the semantic richness of 3D
datasets for accurate object classification, material identification, and comprehensive
interpretation of complex environments [66].

(3) Nearly 43.1% (25 out of 58) of the cases use deep learning-based methods to
achieve semantic segmentation of 3D point clouds. Existing semantic segmentation
algorithms based on deep learning can be generally divided into the following categories: (1)
Point convolutional network. PointNet [53] is one of the earliest deep learning models used
for point cloud classification and segmentation. It achieves classification by learning global
and local features of point clouds [83]. PointNet++ [106] introduces a hierarchical structure
on this basis, further improving the segmentation effect [68, 76]. (i1)) Voxel-based methods
divide the point cloud into voxel grids and then perform convolution operations on each

voxel [73, 74], with models like VoxNet [107] and 3D U-Net [32, 108]. (ii) Graph-based
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methods treat point clouds as graph structures and use graph neural networks (GNNs) to
capture the relationship between points, with models such as GAPointNet [109] and Graph-
CNNs s [30].

(4) Commercial BIM software usually provides more comprehensive functions and
professional technical support, while open-source software has higher flexibility and
customizability. Autodesk ReCap and Revit are two commercial software that are currently
widely used. Autodesk ReCap [62, 67] is mainly used for pre-processing of point cloud data,
such as data cleaning, noise reduction, and preliminary geometric reconstruction. Autodesk
Revit [41, 85] is a BIM software widely used in the AEC industry. It supports full-process
management from design to construction to operation and maintenance. Its main functions
include 3D geometric mapping and object-based modeling. Some software needs to be used
in conjunction with specific models of 3D point cloud acquisition equipment, such as Trimble
RealWorks [61], which supports full-process management from data acquisition to final
model generation. In addition, Blender's open-source characteristics and active community
support make it a highly customizable and extensible tool suitable for projects that require
flexible processing and innovative solutions.

(5) As-built BIM is an essential digital asset supporting the operation and maintenance
(O&M) of buildings, enhancing information management across various stages of the
building lifecycle, particularly in facility management and space management [36, 69]. Scan-
to-BIM is an effective method for obtaining as-built BIM, enabling construction quality
monitoring, reducing human errors, and accelerating project delivery during the construction
(const.) phase [41, 86]. The digital twin based on scan-to-BIM can also reduce material waste
and rework, saving both costs and time. For newly constructed buildings, such as indoor
scenes of university buildings, evaluating the geometric uncertainty of the created BIM
model supports operational and maintenance management of building projects, especially in
civil engineering fields that require high precision [73]. For aging concrete buildings, the
purpose of scan-to-BIM is to improve safety inspection processes, supporting efficient
maintenance decision-making [60]. In the conservation of historical buildings (CHB), scan-
to-BIM is utilized to record and analyze, connecting different databases to support the
preservation, management, and restoration of cultural heritage [99, 100, 110].

3.2 Keyword co-occurrence and cluster analysis
Keywords provide a concise overview of an article’s research content. In this review, we

visualize a knowledge domain map of literature keywords to highlight current research
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focuses and potential future directions. As shown in Fig. 3, a collaborative analysis of
keywords was implemented, which clearly illustrates the research dynamics of the automated
scan-to-BIM processes. In this Figure, the importance of keywords is reflected by the font
size. The larger the font, the higher the frequency of the keyword. The strength of the
association between keywords is represented by the thickness of the connecting line. The
thicker the line, the closer the relationship between the keywords.

As illustrated in Fig. 3, scan-to-BIM is integrally linked to established domains such as
3D point cloud processing, semantic segmentation, and building information modeling for
construction. Moreover, it demonstrates substantial interactions with emerging technologies,
including advanced laser scanning and 3D reconstruction. In particular, "culture heritage" and
"facility management" reflect the application potential of scan-to-BIM processes in
engineering. Additionally, Fig. 3 reveals a dense cluster centered on "point cloud,"
underscoring the high importance of this topic in the relevant literature. These keywords form
the core concept and technical application of 3D point cloud data in scan-to-BIM processes,
enabling the automatic detection and extraction of architectural elements through high-
precision data acquisition and processing. The above analysis indicates that scan-to-BIM
serves a bridge connecting the physical world and the digital world. Future research should
explore the use of advanced artificial intelligence methods to optimize scan-to-BIM
processes. Concurrently, emphasis should be placed on interdisciplinary collaboration to

foster the deep integration of theory and practice.
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Fig. 3. Co-occurrence network mapping of keywords.

By performing cluster-based topic analysis on the literature, the association of hidden
characteristic topics can be revealed in different literature, which is crucial for conducting a
systematic review. The cluster topic analysis was performed using the log-likelihood ratio
(LLR) algorithm in CiteSpace software, with the results presented in Fig. 4. Each group is
marked with a unique color code. By exploring these different clusters or topics, the objective
is to identify the research hotspots and challenges encountered by automated scan-to-BIM
processes.

The largest cluster (labeled as "#0") is centered around "point clouds," this cluster is
connected to several other clusters such as "terrestrial laser scanning", "3D semantic
segmentation", "classification", "progress tracking", "quality assessment". These clusters
represent different aspects of the scan-to-BIM processes, including data acquisition,
processing, analysis, and management. The cluster "scan to BIM" (#6) serves as a key node
in the network, and it is associated with various other keywords such as "architectural
heritage", "facilities management", "quality", and "reverse engineering". The network
visualization provides insights into key topics and trends in research on automated scan-to-
BIM processes, highlighting areas that require further investigation to address challenges and

advance the technology.
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Fig. 4. Cluster-based topic distribution.

3.3 Research trends
In recent years, research on Scan-to-BIM has exhibited concurrent trends of diversification
and intelligent development. A comprehensive analysis reveals a steady increase in the
number of related publications, as illustrated in Fig. 5. The focus of research has evolved

430 from an early reliance on terrestrial laser scanning [67-69] to a broader adoption of various
methods, including handheld laser scanning [42] and mobile scanning systems [27], in order
to meet the requirements of different application scenarios in terms of accuracy, efficiency
and accessibility. In particular, advances in unmanned aerial vehicle and robotic technologies
[76] have led to significant breakthroughs in acquisition of point clouds within high-risk

435 environments. To address the storage and processing burdens associated with high-density
point clouds, data cleaning and down-sampling techniques have been continuously refined
[111], encompassing statistical filtering, radius filtering, and conditional filtering, as well as
voxel grid, random, and uniform down-sampling, with the aim of improving both data quality

and processing efficiency [114].



440 In the stages of semantic and instance segmentation, deep learning approaches have
significantly improved accuracy in complex scenes [118]; however, challenges remain in
environments with high density and occlusions. In terms of building layout reconstruction
and component matching, research has progressively shifted from traditional geometric
feature extraction toward deep learning-based methods [127, 128], incorporating 3D feature

445 learning networks into matching and registration processes to enhance robustness. Regarding
software support, developments included the seamless integration between Autodesk ReCap
and Revit to the flexible plugin ecosystems of open-source platforms such as Blender, which
reflected an increasing demand for cross-platform and cross-format data exchange and
collaborative modeling [62, 67]. Overall, the Scan-to-BIM domain is rapidly progressing

450 toward multi-source data fusion, higher levels of automation, and intelligent processing. The
dual driving forces of hardware diversification and algorithmic intelligence continue to

expand its application potential in the management of the entire lifecycle of buildings.
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Fig. 5. Research trends and data acquisition equipment, Jan. 2015-Aug. 2025.

455 Therefore, systematically summarizing the guiding principles of Scan-to-BIM is

essential for coordinating diversified equipment selection, optimizing data processing
workflows, and improving the accuracy of semantic segmentation and model generation.

Guidelines for adopting Scan-to-BIM processes can serve as standardized references for
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practice amid rapid technological advancement, thereby facilitating the transition of industry
applications from experimental research toward large-scale, engineering-oriented

implementation.

4. Technological analysis and guidelines

Building on the preceding systematic literature review and case analyses, this section
undertook the technical exploration and formulates practice-oriented guidelines. A multi-
dimensional technical analysis enables an evaluation of the applicability of current research.
By integrating different construction stages, a clearly structured four-step implementation
framework is proposed, which aims to provide AEC practitioners with comprehensive
decision support spanning from technology selection to practical implementation.

4.1 Technological analysis results

The technical analysis provided an in-depth review of the core stages within the automated
Scan-to-BIM pipeline, covering five areas: data acquisition hardware, data cleansing and
down-sampling, semantic segmentation of scans, layout estimation and registration, and
widely used software tools.

4.1.1 Data acquisition equipment

The initial step in implementing a scan-to-BIM system is to select appropriate equipment for
acquiring 3D point cloud of the real world. This involves evaluating various scanning
methods and factors such as accuracy, scanning range, portability, and cost to determine
which technology that suits the project's requirements.

Terrestrial laser scanning (TLS) provides high measurement accuracy and resolution,
and are particularly suitable for scenarios where detailed documentation of the interior and
exterior structures of buildings is required [67-69]. Such equipment are usually fixed in one
position and rotate to obtain 3D point cloud data of the surrounding environment. Despite
their accuracy advantages, TLS equipment has some drawbacks, including lengthy setup
times and complex data processing requirements. Additionally, they are non-portable and
relatively expensive. Handheld laser scanning (HLS) is renowned for its portability and
flexibility, making it suitable for scanning of small-scale spaces [42]. However, the accuracy
of handheld equipment can be constrained by the stability of the operator's hand, and may not
be practical for scanning large areas. From a cost perspective, HLS equipment is economical
for smaller projects with limited budgets.

Mobile scanning systems (MSS) integrate vehicles with laser scanning technology to
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collect large amounts of 3D point cloud data while in motion, making MSS ideal for scanning
urban infrastructure, roads, and outdoor spaces [27]. MSS is highly efficient and offers wide
coverage area, but is also costly. UAV-based scanning systems (USS) are particularly
suitable for areas that are difficult to access or present hazardous conditions [26]. USS can
scan large areas of terrain and buildings from high altitudes, providing comprehensive data
coverage while being portable. However, their performance is significantly impacted by
weather conditions. Robotic scanning systems (RSS) utilize automated robots equipped with
laser scanning equipment, which can navigate along a predefined path and complete scanning
tasks [76]. RSS are suitable for hazardous environments or tasks that require repeated
scanning, such as inspections of the internal structures of nuclear power plants. Robotic
systems can provide stable data collection and minimize human error, but the initial
investment cost is high and professional technical support may be required. Based on this
analysis, the selection of data acquisition equipment should align with specific project
scenarios and constraints at different construction stages, as summarized in Fig. 6. The figure
illustrates the correlations and decision-making between equipment selection, construction
stages (CDT), and specific scenarios, including factors such as access difficulty, hazard level,

and environment type (e.g., infrastructure, buildings).

CDT stage Scene DAM
Const. Difficult to access or hazardous
N - > [—
</ oy
ow.
< TLS or HLS
O&M ;mDinicult 10 access or hazardous}< -
oW,
,< HLS or MSS
OMW. Infra. or Bldgs.
':m ;/ TLS or HLS or USS
\ 4 Ty

Fig. 6. Decision tree for DAM selection.
4.1.2 Data cleaning and down-sampling
The inherent complexity of raw 3D point clouds induces computational burdens throughout
storage and processing pipelines, consequently compromising the integrity of downstream

processes ranging from reconstruction to the generation of topologically consistent. Within
20
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the field of scan-to-BIM processes, effective data cleaning and down-sampling methods are
crucial for enhancing data quality and processing efficiency [30, 32].

The presence of noise points and outliers can adversely affect the accuracy of
subsequent data processing and modeling [111]. Common data cleaning methods include
statistical filtering, radius filtering, and conditional filtering. Statistical filtering identifies and
removes noise points by calculating the local density of point cloud data [112], radius
filtering determines and removes outliers based on the neighborhood radius of each point in
the point cloud [113], and conditional filtering selects data points that meet the requirements
according to preset conditions [114].

Down-sampling is first designed to control the volume and increase uniformity of point
cloud data, while it well preserves the geometry, thereby enhancing data processing and
storage efficiency [115]. Common down-sampling methods encompass voxel grid down-
sampling, random down-sampling, and uniform down-sampling. Voxel grid down-sampling
reduces the amount of data by partitioning the point cloud into fixed-size 3D grids and
retaining a representative point within each grid [84]. Random down-sampling involves the
random selection of a subset of points from the point cloud, making it suitable for scenarios
with lower accuracy requirements [116]. Uniform down-sampling selects data points at
regular intervals and is employed for point clouds characterized by large volumes and

uniform distribution [117].

4.1.3 Semantic segmentation of scans
Semantic segmentation establishes a comprehensive partitioning of scenes at the semantic
level by assigning category labels (such as wall, floor, ceiling, etc.) to each point cloud.
Instance segmentation extends this capability by precisely delineating and distinguishing
different object instances (such as different chairs or different tables) that share identical
semantic classifications. In recent years, the rapid advancement of deep learning has led to the
prominence of semantic segmentation based on convolutional neural networks (CNNs), graph
convolutional networks (GCNs), and other deep learning models. Notable examples include
models such as PointNet [53], PointNet++ [106], and PointCNN [118]. Additionally, deep
learning methods based on multi-view representations have also demonstrated substantial
progress in enhancing the performance of point cloud semantic segmentation.

Instance segmentation is more complex than semantic segmentation because it not only

needs to identify the category of points, but also needs to distinguish different instances in the
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same category. Currently, there are two main types of instance segmentation methods:
grouping-based methods and detection-based methods. Grouping-based methods, such as
similarity group proposal network (SGPN) [119] and generative shape proposal network
(GSPN) [120], group points of the same instance together by learning the relationship
between points; while detection-based methods, such as 3D semantic instance segmentation
(3D-SIS) [121] and VoteNet [122], first detect the bounding box of the instance, and then
perform instance-level point cloud segmentation. PointGroup [123] and PointRCNN [124]
significantly improve the accuracy and robustness of segmentation by introducing attention
mechanism and multi-stage detection strategy. Although these methods improve the accuracy
of instance segmentation to a certain extent, there are still challenges when dealing with
dense, complex, severely occluded, and dynamic scenes.

4.1.4 Layout and registration

The reconstruction of general AEs focuses on extracting and reconstructing the main
structure and layout of the building, such as walls, floors, and ceilings, from 3D point cloud
data. The matching and registration of detailed BIM objects refine this process to specific
building components, such as doors, windows, pipes, and furniture. The accuracy and
efficiency of these two steps directly impact the quality and utility of the final BIM model.

In terms of general AEs layout reconstruction, traditional methods usually rely on the
extraction and rule matching of geometric features, such as plane detection algorithms, line
segment detection, and surface fitting techniques to identify and reconstruct basic elements
such as walls, floors, and ceilings [125, 126]. These methods perform well when dealing with
simple and regular building structures, but often have limited performance when faced with
complex and irregular building layouts. In recent years, layout reconstruction methods based
on deep learning have gradually emerged, such as using convolutional neural networks
(CNNs) and generative adversarial networks (GANs) to automatically extract and reconstruct
architectural elements [127, 128]. These methods have shown great potential in dealing with
complex scenes and improving reconstruction accuracy.

Matching and registration of detailed BIM objects refers to matching specific building
components in point cloud data with predefined BIM object libraries and accurately
registering them to their actual locations. Traditional matching and registration methods
mainly include feature-based matching, such as SIFT [129], SURF [130], etc., and
optimization-based registration, such as ICP [131], GICP [132]. These methods are more

effective when dealing with simple objects, but the matching accuracy and efficiency will be
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affected when faced with occlusion, noise and complex backgrounds. In order to solve these
problems, matching and registration methods based on deep learning have emerged in recent
years, such as using 3D convolutional neural networks and point cloud feature learning
networks to automatically extract and match high-dimensional features, thereby improving
the accuracy and robustness of registration [133].

4.1.5 Software

This paper reviews several commonly used software and explores their applications and
advantages in the scan-to-BIM processes, as shown in the Fig. 7. Autodesk ReCap is mainly
used for data preprocessing of point cloud data, such as data cleaning, noise reduction, and
preliminary geometry reconstruction [62, 67]. It can be seamlessly integrated with Autodesk
Revit, allowing users to use the processed point cloud data directly in Revit for detailed BIM
modeling. Revit has powerful parametric modeling capabilities, can efficiently create and edit
building information models, and supports export in multiple formats, such as IFC and RVT,

which facilitates data exchange and collaboration with other BIM software [41, 85].

Data processing Software Type Software

Data preprocessing {/\\ Comm.

>

\

Autodesk ReCap or ContextCapture

Open

L 4

CloudCompare or Blender

BIM authoring Comm.

Autodesk Revit or SketchUp

Open
Blender

Data exchange and
collaboration

) —O <

Comm.

Autodesk Revit or MicroStation

Open

4

CloudCompare or Blender

h

A A A AA

Fig. 7. Decision tree for software selection.

Blender is an open-source 3D modeling and rendering software with powerful modeling,
animation, rendering, and visual effects capabilities [63, 134]. Although Blender was not
originally designed for building information modeling, its flexible plug-in system and
powerful Python script support enable it to adapt to various point cloud data processing and
BIM authoring needs. Blender's point cloud processing plug-ins, such as BlenderGIS and

Point Cloud Visualizer, can help users import, visualize, and process point cloud data.
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Through compatible plug-ins with other BIM software, Blender can export files in multiple
formats, such as OBJ, FBX, and IFC, which facilitates data exchange and collaboration with
other BIM software.

Bentley Systems' ContextCapture and MicroStation are also commonly used 3D
reconstruction software. ContextCapture generates high-precision 3D models through
photogrammetry technology, which is suitable for data processing of large-scale and complex
building scenes [27, 74]. The created model can be imported into MicroStation for further
BIM modeling and editing. MicroStation has powerful 3D modeling and data management
capabilities, supports the import and export of multiple file formats, such as DGN and IFC,
and is suitable for the data exchange and collaboration needs of complex engineering
projects. Trimble's RealWorks [61] provides a variety of point cloud processing functions,
such as point cloud stitching, cleaning, and classification, and can efficiently process large-
scale point cloud data. SketchUp is widely popular among users for its easy-to-use interface
and powerful modeling functions. Through plug-ins, SketchUp can exchange data with other
BIM software, such as exporting to IFC file format.

4.2 Guidelines for adopting scan-to-BIM processes
Based on the preceding analysis and the 58 cases examined in this review, we have
summarized the guidelines for automated scan-to-BIM processes, which are organized into

four key steps as shown in Fig. 8.

Determining the data acquisition method, interested
Step 1 . :
target, and information storage plan
A 4
Step 2 Determining which algorithm should be utilized
Choosing appropriate data processing software and
Step 3 )
storing the results
v
Step 4 Applying results in further utilization

Fig. 8. Four-step guidelines for choosing appropriate scan-to-BIM processes.

Step 1: The first step is determining the data acquisition method. The implementation of
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the automated scan-to-BIM process requires the selection of appropriate equipment to acquire
3D point cloud data from the real world. In the construction stage, some scenes are difficult
to access or hazardous, so robotic scanning systems or UAV-based scanning systems can be
appropriate. Robotic scanning systems is suitable for dangerous environments or tasks that
require repeated scanning, and robotic scanning systems can navigate along a predefined path
[76]. UAV-based scanning can scan large areas of terrain and buildings from high altitudes
[26], but is greatly affected by weather conditions.

During the O&M stage, robotic scanning systems is suitable for difficult-to-access or
dangerous scenarios, otherwise (noted as “o.w.”) handheld laser scanner or mobile scanning
systems can be selected. Handheld laser scanners are known for its portability and flexibility,
and is suitable for scanning small-scale spaces [42]. Mobile scanning systems can collect
large amounts of 3D point cloud data while on the move, making it ideal for scanning urban
infrastructure, roads, and a wide range of outdoor spaces [27]. For the remaining stages, such
as CHB, it can be selected between terrestrial laser scanners, handheld laser scanners, or
UAV-based scanning systems, to ensure efficient and accurate data collection. TLS provide
high measurement accuracy and resolution, and are particularly suitable for scenarios that
require detailed recording of the internal and external structures of buildings [67-69].

However, terrestrial laser scanners lack portability and require extended data collection times.

CDT stage Data type Storage
Const. m BIM model data /
> > \ Cloud
O.W.
r< Local
O&M ’/'\\ 3D point cloud data /
= > Local
oW
>< Cloud
oW L, Multi-modal data /
> > Cloud or Local
L 4 Ty

Fig. 9. Decision tree for data storage selection.
Fig. 9. shows the decision tree for data storage selection at various CDT stages. During
the construction stage, the primary data to be processed is BIM model, which are typically

stored in the cloud to facilitate collaboration and access. In the O&M stage, the data to be
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managed are predominantly 3D point cloud data, which are large and needs to be accessed
quickly, so local storage is usually selected. For other works, the data handled are multi-
modal, including images, videos, and sensor data, which require flexible storage solutions to
meet the diverse needs of different projects.

Step 2: The next step involves selecting suitable algorithms for data processing. The
detailed data processing workflow includes data cleaning and down-sampling, semantic
segmentation of scans, and layout and registration, as discussed in detail in Sections 4.1.2—
4.1.4. Raw 3D point cloud data often contains noise, outliers, and redundant information,
which not only increases the costs of data storage and processing, but also negative impacts
on subsequent model construction and analysis. Therefore, applying effective data cleaning
and down-sampling during the scan-to-BIM process is essential for ensuring data quality and
processing efficiency [30, 32].

The automation of scan-to-BIM is closely associated with semantic enrichment.
Semantic segmentation aims to classify each point into a specific category (e.g., walls or
windows), while instance segmentation further distinguishes between different instances
within the same category (e.g., different chairs). The rapid advancement of deep learning
techniques in recent years has facilitated the widespread adoption of semantic segmentation
methods utilizing deep learning models, such as CNNs [53, 106] and GCNs [30].
Retrieval-augmented generation (RAG)-based segmentation has emerged as a promising
approach, leveraging external knowledge retrieval to enhance segmentation performance
[134, 135].

Traditional layout and registration methods rely on the extraction of geometric features
for rule-based matching. Examples include plane detection algorithms, line segment
identification, and surface fitting techniques [125, 126]. In recent years, deep learning-based
layout methods have gradually emerged, for instance, application of GANSs to automatically
extract and reconstruct architectural elements [127, 128]. Registration refers to matching
specific building components in the point cloud data with predefined BIM object libraries.
Commonly algorithms for registration include ICP [131] and SIFT [129]. These
advancements contribute to increased precision and efficiency in Scan-to-BIM processes.

Step 3: The third step involves selecting appropriate data processing software and
storing the results. During the data preprocessing stage, commonly used commercial software
includes Autodesk ReCap and ContextCapture, while frequently utilized open-source

software comprises CloudCompare and Blender. These software tools are primarily
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employed for point cloud data cleaning, noise reduction, and preliminary geometric
reconstruction [62, 67].

In the BIM modeling stage, commonly used commercial software includes Autodesk
Revit and SketchUp. These software packages possess parametric modeling capabilities,
which allow for the efficient creation and editing of BIM. They also support exporting in
multiple formats, facilitating collaboration with other BIM software [41, 85]. Additionally,
the open-source software Blender is equipped with modeling and rendering capabilities. It
can adapt to various point cloud data processing and BIM modeling requirements through its
flexible plugin system and robust support from Python scripting [63, 136].

Step 4: The final step involves applying the results for further utilization. During the
construction phase, Scan-to-BIM is suitable for scenarios such as verification and
deformation monitoring [41, 86]. In the O&M phase, digital twin technology based on Scan-
to-BIM can reduce material waste and rework, thereby saving costs and time. In the field of
infrastructure, Scan-to-BIM is primarily used for the digital modeling and management of
large structures such as bridges [63, 101] and tunnels [47]. For infrastructure like bridges,
researchers have proposed an integrated Scan-to-BIM-to-Sim framework to support structural
performance analysis and evaluation [137]. In addition, point cloud completion techniques
are being explored to further improve the integrity and precision of model reconstruction
[138]. In the context of historic building preservation, Scan-to-BIM is employed for
documentation and analysis. By integrating various databases, it supports the conservation,
management, and restoration of cultural heritage [52, 99, 110]. At the stage of building
demolition, the coupling of Scan-to-BIM data and robotics enables the automated sequencing
of reinforced concrete structure disassembly, thereby supporting the sustainable reuse of

components [139].

5. Conclusion

BIM is a crucial digital asset for enhancing the digitization level of AEC, and automated
scan-to-BIM offer an effective system of obtaining as-built BIM. This paper summaries a
conceptual model to demonstrate the current status and development trajectory of automated
scan-to-BIM processes, based on the systematic analysis of 58 real cases. Terrestrial laser
scanning is identified as the most prevalent method for collecting 3D point clouds, and there
is a growing trend towards the use of deep learning-based methods for the semantic

segmentation of 3D point clouds. However, point cloud data quality remains a significant
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bottleneck in practice, particularly in complex, occluded, and dynamic environments. The
generalizability of deep learning across different architectural styles and construction
environments needs further validations. Commercial software offers comprehensive functions
and professional technical support, whereas open-source software provides flexibility and
customizability. Automated scan-to-BIM serves not only as a bridge connecting the physical
and digital worlds but also as a significant driving force for the development and application
of construction management.

Guidelines has been developed to assist future practitioners in selecting and
implementing appropriate automated scan-to-BIM processes, thereby maximizing their
capabilities in AEC. The guidelines encompass four main steps: (1) Determining the data
acquisition equipment, interested target, and information storage plan; (2) Determining which
algorithm should be utilized; (3) Choosing appropriate data processing software and storing
the results; and (4) Applying results in further utilization. These steps have been
demonstrated to be effective in actual applications in construction projects.

Future research is recommended to focus on five key directions as follows. (1) More
infrastructure scenes can be included in the applications of Scan-to-BIM. For large-scale
infrastructure, it would be beneficial to enhance 3D point clouds with satellite or terrestrial
Interferometric Synthetic Aperture Radar (InSAR) sensing to enable millimeter-accurate
structural health analysis for bridges, tunnels, and dams. (2) Multi-source sensing data fusion
can enable novel scan-to-BIM applications. For example, high-definition imagery can
supplement 3D point cloud for small building elements, such as fire sprinklers, while
ground-penetrating radar can detect subsurface concrete details. Open accessible benchmark
datasets can boost the reproducibility and trustworthiness of scan-to-BIM research findings to
impact the industry. (3) In semantic segmentation, emerging generative Al methods may
open new opportunities for 3D point cloud segmentation in several ways, e.g., improving the
automated data cleaning of incomplete or noisy 3D points of openings and glass and
retrieval-augmented generation (RAG) segmentation. (4) For BIM ecosystems, a
diversification of BIM authoring and analytic tools, e.g., OpenBIM and localized BIM
beyond existing mainstream platforms, can better align with local technical standards and
cultural-economic contexts, for BIM resilience in a dynamic world. (5) Researchers are
suggested to push the boundaries of CDT in applying novel simulation and reasoning for
responding to global climate shocks and extreme weathers to buildings and infrastructure,

and in energy efficiency in operational stage of buildings for lower carbon footprints.
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This paper addresses a significant knowledge gap in the application of automated scan-
750 to-BIM, by reviewing the status quo of technological areas, active development trends,
practical guidelines, and future directions. The applicability of the automated scan-to-BIM
guidelines is recommended in a broader range of construction scenarios, particularly
infrastructure projects. From a long-term perspective, automated scan-to-BIM is not a one-off
task, but a promising knowledge base for digital transformation and value cocreations in oft-

755 site construction, operations and maintenance, and demolition stages.
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