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Abstract 

Estimating the composition of construction waste is crucial to the efficient operation of various 
waste management facilities, such as landfills, public fills, and sorting plants. However, this 
estimating task is often challenged by the desire of quickness and accuracy in real-life scenarios. 
By harnessing a valuable data set in Hong Kong, this research develops a big data-probability 5 

(BD-P) model to estimate construction waste composition based on bulk density. Using a 
saturated data set of 4.27 million truckloads of construction waste, the probability distribution 
of construction waste bulk density is derived, and then, based on the Law of Joint Probability, 
the BD-P model is developed. A validation experiment using 604 ground truth data entries 
indicates a model accuracy of 90.2%, Area Under Curve (AUC) of 0.8775, and speed of around 10 

52 seconds per load in estimating the composition of each incoming construction waste load. 
The BD-P model also informed a linear model which can perform the estimation with an 
accuracy of 88.8% but consuming 0.4 seconds per case. The major novelty of this research is 
to harmonize big data analytics and traditional probability theories in improving the classic 
challenge of predictive analyses. In the practical sphere, it satisfactorily solves the construction 15 

waste estimation problem faced by many waste management facility operators. In the academic 
sphere, this research provides a vivid example that big data and theories are not adversaries, but 
allies.  
 
Keywords: Big Data; Probability; Big Data Enabled Probabilistic Analysis; Construction 20 

Waste; Composition Estimation 
 
1. Introduction 

Construction waste, sometimes also called construction and demolition (C&D) waste, is the 
solid waste generated from site clearance, soil excavation, new building, refurbishment, 25 

renovation, demolition, and other construction activities (HKEPD, 2019; Lu et al., 2020). It is 
often composed of both inert and non-inert construction materials (UK DEFRA, 2020; 
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Australian Government, 2011; HKEPD, 2008). The former includes clay, earth, concrete, 
rubble, and bitumen, while the latter includes wood, bamboo, paper, plastics, and vegetation 
(Aslam et al., 2020; EPA, 1997; EU, 2018). Prevalent construction waste management (CWM) 30 

systems normally stipulate different disposal destinations of C&D waste depending on its 
composition. For example, in the U.S., most C&D waste is lawfully destined for disposal in 
landfills regulated under Title 40 of the Code of Federal Regulations (CFR) (Allegri, 1986). In 
Hong Kong, non-inert waste goes to landfills or incinerators, inert waste to public fills or 
recycling plants, and mixed waste to sorting facilities (HKEPD, 2008). It is common that the 35 

facilities will have to determine admissibility or chargeable waste disposal levy, depending on 
waste composition. For example, in the Australian state of New South Wales, the Protection of 
the Environment Operations (Waste) Regulation (NSWEPA, 2020) and the Waste Levy 
Guidelines (NSWEPA, 2014) set out waste composition calculations and waste levy details. 
Recognition of waste composition also needs to be done swiftly, since many users are queuing 40 

outside the facilities. Therefore, quick and accurate estimation of construction waste 
composition is key to these CWM facilities or even the entire CWM system.  
 
Previous methods for estimating waste composition can be roughly classified into three 
categories: statistical sampling, photogrammetry, and other non-invasive approaches. The 45 

statistical sampling approach classifies, weighs, and calculates the percentage of each type of 
waste material in a sample. It is widely used to analyze construction waste component 
characteristics in a specific region (Asgari et al., 2017; Cochran et al., 2007; Hoang et al., 2020), 
different project types (Villoria Sáez et al., 2012), or different construction stages (Wu et al., 
2019). However, a drawback of the approach is its inefficiency due to requiring onerous manual 50 

operation. The photogrammetry-based approach uses algorithms to deal with the collected 
visual imagery of construction waste for recognizing its composition. Visual features recorded, 
measured and interpreted in photogrammetry include shape, pattern, gradation, and size (Chen 
et al., 2021; Califice et al., 2013; Paine & Kiser, 2012). The photogrammetry-based approach 
had received attention around ten years ago (Wagland et al., 2012) and is still topical nowadays 55 

(Davis et al., 2021) for academic studies and practical applications. The advantage of such 
approach is to reduce the onerous manual operation (Peddireddy et al., 2015; Wagland et al., 
2012), but the downside is that construction waste must be spread evenly to a depth (generally 
no greater than 30 cm) for waste components to be visually recognised (Wagland et al., 2012). 
Based on an assumption that the visible surface composition reflects the total one, Chen et al., 60 

(2021) proposed a depth-controlling-free photogrammetry approach to gauge the composition 
by looking at the surface of truck-loaded construction waste dumps. However, more proofs are 
needed to prove the reliability and universality of the assumed condition. Other non-invasive 
approaches to waste composition estimation have also been explored, e.g., using fluorescence 
presence, microwave frequency measurement, and X-ray imaging (Vrancken et al., 2017). 65 

While these approaches can capture component type information, they lack accuracy in 
recording component weight and volume. 
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This research aims to develop a quick and accurate approach to estimating construction waste 
composition. It is a direct response to a real-life challenge as faced by the HKEPD 70 

(Environmental Protection Department of Hong Kong), but we found parallels in many other 
places such as India, Taiwan, and the UK wherein their CWM facilities also need to estimate 
the composition of incoming waste bulks/loads quickly and accurately (see Figure 1). 
  
Particularly, HKEPD is responsible for managing all C&D waste in the territory. It uses a tiered 75 

system whereby all construction waste must be disposed of at governmental waste disposal 
facilities, unless it is properly reused or recycled. A truckload of construction waste is sent to 
public fills or a recycling plant if it contains purely inert materials, to a sorting plant if it contains 
more than 50% inert materials by weight, or otherwise to landfill (Lu et al., 2016). Waste 
producers are charged a landfill disposal fee of HK$200 per tonne, a sorting plant fee of 80 

HK$175 per tonne, and HK$71 per tonne at public fills. Different levies and disposal 
destinations generate the need for construction waste composition estimation. Based on the 
empirical knowledge about the relationship between waste weight and composition, the 
HKEPD uses a ‘quick and dirty’ approach to screen waste loads at its CWM facilities, 
translating the weight and height of each load into a single index similar to a body mass index 85 

(BMI). This approach, however, has been found problematic by a Hong Kong Audit 
Commission review report (HKAC, 2016). It only had an accuracy of around 60%.  
 

 
Figure 1. Equipment used to measure incoming waste loads (Sources: a: made by authors; b: 90 

https://bit.ly/2MgdREa; c: https://bit.ly/399WQoh; d: https://bit.ly/3c2Jqfs;) 
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Recent advancements in big data analytics suggest the potential for a solution to the waste 
composition recognition problem. The promise of big data has been widely documented. For 
example, it reveals that construction waste in a region is not entirely random in terms of its 95 

composition (Lu et al., 2021). Constrained by the prevailing construction materials, 
technologies, and waste recycling practices, the bulk density of different types of construction 
waste should converge into an interval and follow a certain probability distribution pattern. If 
we know the pattern, we should be able to tell the composition of an incoming truckload of 
construction waste by its bulk density. A strength of big data is its ability to reach a closer truth 100 

on the ground (LaValle et al., 2011; Lu et al., 2015). Having acquired a set of data concerning 
millions of truckloads of construction waste disposed of in Hong Kong over the past ten years, 
we are able to leverage this strength. The rest of the paper is organized as follows. Section 2 
introduces bulk density and its probability distribution as informed by big data. Section 3 
introduces the research methodology including the theoretical foundation and research methods. 105 

The composition estimation model is explained in Section 4. Section 5 describes the model 
validation experiment. Section 6 discusses the strengths, novelty, prospects, and challenges of 
the approach, and conclusions are drawn in Section 7. 
 
2. Bulk density and its probability distribution 110 

Bulk density is the mass of material divided by the total volume it occupies, where the total 
volume can include particle volume, inter-particle void volume, and internal pore volume (Lyon 
& Buckman, 1922). True density, apparent density, and bulk density are the three kinds of 
density in materials science. Figure 2 shows their differences and how they are calculated. Bulk 
density is not an intrinsic material property. Rather, it is changeable in line with constitutional 115 

material, pore, and inter-particle volume. Because of this, the bulk densities of construction 
waste appear to be totally random since the constitutional materials could be any combination 
of construction materials (e.g., concrete, clay, soil, rocks, paper, wood, vegetation), with any 
size of pore voids and inter-particle voids. Nevertheless, our hypothesis is that bulk density in 
a specific region should converge into an interval and follow a certain probability distribution 120 

pattern, as it is determined by prevailing regional construction materials, technologies, and 
waste recycling practices. 
 

 
Figure 2. The three types of material densities and their calculation methods 125 
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In practice, many CWM facilities have devised methods to measure the mass and volume of 
waste loads on arrival. Figure 1 illustrates some equipment used. Specifically, at HKEPD’s 
facilities (Figure 1a), the (net) weight of a load of C&D waste is calculated by weighing the 
vehicle at the in- and out-weighbridges and subtracting the two. Waste volume is captured and 130 

calculated using sensors above the in-weighbridge. Bulk density is then calculated using 
Equation (1): 
 

𝜌𝜌 =
𝑊𝑊
𝑉𝑉

 

 
(1) 

where ρ is the bulk density of a load of construction waste, W is the net weight, and V is the 
total volume. As mentioned above, the concept is similar to that of BMI, which divides body 135 

mass by the square of height. Despite having its critics, BMI is an easy-to-obtain and 
comprehend indicator to measure whether a person is underweight, normal weight, overweight 
or obese. 
 
Using a big data set of 4.27 million truckloads of construction waste recorded by the HKEPD 140 

from 2017 to 2020, the convergent bulk density intervals of inert and non-inert C&D waste 
materials, and their probability distributions are derived as shown in Figure 3. The bulk density 
of inert construction waste ranges from 0.207 tonnes/m3 to 2.435 tonnes/m3, and highly 
concentrates at around 1.300 tonnes/m3 and 1.800 tonnes/m3. The bulk density of non-inert 
construction waste is between around 0.045 tonnes/m3 and 2.434 tonnes/m3, and highly 145 

concentrates at around 0.300 tonnes/m3. Although the exact cause of multiple crests is yet to be 
fully understood, the big data paints a clear distribution pattern of bulk densities of construction 
waste. This can be harnessed to estimate the composition of a new incoming waste load. 
 

  150 
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Figure 3. The bulk density probability distributions of inert and non-inert construction waste 
(Source: Adapted from Lu et al., 2021) 
 
3. Research methodology 

3.1 Big data-enabled statistical probability 155 

The theoretical underpinning of the methodology here is a novel combination of traditional 
statistical probability theories with modern big data analytics. The classical statistical 
probability theories define an event’s probability as the limit of its relative frequency in many 
repeated trials (Neyman, 1937). Conducting sufficient repeated trials to derive the frequencies 
and to ensure the trials are representative enough of the whole population is often too onerous 160 

to accomplish. Monte Carlo simulation and similar methods can be used to circumvent this 
problem, but such methods need to know the intervention of random variables. Modern 
analytics of big data, which is accumulated unintentionally as the business is done, offer a 
convenient means to this end. Big data can get researchers as close as possible to obtaining an 
event’s probability, or even its totality. This has triggered a series of intellectual debate on the 165 

relationship between big data and scientific methods. Succi and Coveney (2019), for example, 
report that many researchers draw upon the Law of Large Numbers and foresee that with big 
enough data, errors (uncertainty) are bound to surrender to certainty. Big data-enabled 
correlation supersedes causation and science can advance even without coherent models, 
unified theories, or any mechanistic explanations (Anderson, 2008). This has even prompted 170 

the pronouncement that big data is the end of scientific theory.  
 
Statistics and big data analytics are combined mainly in support of more accurate event 
prediction. Using big data-enabled probability distribution for prediction or estimation is a 
nascent field normally referred to as predictive analytics. Specifically, predictive analytics 175 

refers to using current and historical data to predict future or unknown events (Waller & Fawcett, 
2013). Emerging studies have adopted it in several domains. Zuccolotto et al. (2018) analyzed 
the shooting performance of basketball players in high-pressure game situations by using the 
big data on Olympic Basketball Tournament. Zhang et al. (2015) estimated the probability 
distributions of safety distance of different-sized ships by using automatic identification system 180 

data collected in Singapore’s port waters. Fu et al. (2018) proposed a big data-driven probability 
model to estimate the probability of insufficient gas supply incidents due to weather uncertainty. 
Li et al. (2017) developed a new method for tackling the problem of inaccurate disease 
probability prediction in the field of big health. These studies demonstrate the promise of using 
the big data-enabled probability distribution for predictive analysis. The key is to derive the 185 

probability distribution of the target event from the big data set, and then use a proper theoretical 
probability model (e.g., normal, lognormal, or Poisson distribution) to fit the distribution. 
Finally, the fitted probability model is used for predicting or estimating future events. 
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3.2 Harmonizing big data analytics and probability theories for waste composition 190 

estimation 
The bulk density probability distributions of inert and non-inert construction waste are complex, 
showing two significant crests for non-inert waste and seven for inert waste (see Figure 3). 
Finding a theoretical probability model to fit these two distributions is not easy. In the end, 
inspired by Ross (2020), Scott (2018), and Torrecilla (2018), we decide not to fit theoretical 195 

probability models but to use the unfitted probability distribution directly. The Law of Joint 
Probability and Cumulative Distribution Function are adopted to build the core link of the 
composition estimation model. Firstly, we need to derive the joint probabilities of all possible 
composition forms (inert vs. non-inert composition) in a construction waste load. Then, we 
adopt the cumulative distribution function to calculate the cumulative probability of the 200 

composition belonging to a specific composition range or not.  
 
The composition form of a construction waste load can be quantitatively expressed by the inert 
component weight proportion in the total weight, denoted as 𝐼𝐼𝑊𝑊𝐼𝐼 (inert waste proportion). 
With a known 𝐼𝐼𝑊𝑊𝐼𝐼, the non-inert component weight can be easily derived because a waste 205 

bulk only consists of inert and non-inert parts. In this study, the output of construction waste 
composition estimation is defined as the range of 𝐼𝐼𝑊𝑊𝐼𝐼, such as 𝐼𝐼𝑊𝑊𝐼𝐼 > 80%. 
 
The two bulk density probability distributions presented in Figure 3 can be expressed in 
Equation (2) and (3) as follows: 210 

 
𝐼𝐼�𝜌𝜌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜌𝜌𝑗𝑗� = 𝐼𝐼𝑗𝑗; 𝑗𝑗=1, 2, 3, …, 𝑛𝑛 

𝐼𝐼(𝜌𝜌𝑖𝑖𝑛𝑛𝑖𝑖−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜌𝜌𝑘𝑘) = 𝐼𝐼𝑘𝑘; 𝑘𝑘=1, 2, 3, …, 𝑚𝑚 
(2) 
(3) 

 
where 𝜌𝜌𝑗𝑗 is one of the inert waste bulk densities (𝜌𝜌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖), and 𝜌𝜌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∈ [0.207, 2.435] tonne/m3. 
𝜌𝜌𝑘𝑘 is one of the non-inert waste bulk densities (𝜌𝜌𝑖𝑖𝑛𝑛𝑖𝑖−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖), and 𝜌𝜌𝑖𝑖𝑛𝑛𝑖𝑖−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∈ [0.045, 2.434] 
tonne/m3. 𝑛𝑛 and 𝑚𝑚 refer to the finite number of inert and non-inert composition bulk density 215 

values respectively, and they depend on the decimal place determination of weight and volume. 
Both the sum of all 𝐼𝐼𝑗𝑗 and the sum of all 𝐼𝐼𝑘𝑘 are 100%. 
 
We know that a bulk of incoming construction waste contains inert and non-inert materials with 
an unknown weight ratio. The total waste weight and volume can be obtained by using 220 

measuring equipment as shown in Figure 1. The possible inert composition weight ranges from 
zero to the total waste weight, and possible inert composition volume ranges from zero to the 
total waste volume. Randomly selecting a value from the weight interval to be the weight of the 
inert component of the construction waste load, and a value from the volume interval to be the 
volume of the inert component, we can calculate an inert composition bulk density value (𝜌𝜌𝑗𝑗) 225 

by using the selected weight divided by the selected volume. The selected inert composition 
weight and volume naturally determine non-inert composition weight and volume, because the 
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waste load consists of inert and non-inert components only. We can thus calculate a non-inert 
composition bulk density value (𝜌𝜌𝑘𝑘) by the same method. In this way, we can assume a possible 
ratio of inert and non-inert composition in a waste load and calculate their respective bulk 230 

densities by having a pair of weight and volume values. 
 
If the derived 𝜌𝜌𝑗𝑗 belongs to 𝜌𝜌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 interval and the derived 𝜌𝜌𝑘𝑘 belongs to 𝜌𝜌𝑖𝑖𝑛𝑛𝑖𝑖−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 interval, 
the combination of 𝜌𝜌𝑗𝑗 and 𝜌𝜌𝑘𝑘 exactly represents one possible composition of the new incoming 
waste load, denoted as 𝐼𝐼𝑊𝑊𝐼𝐼𝑖𝑖. We can obtain the probability of 𝜌𝜌𝑗𝑗 according to Equation (2) and 235 

the probability of 𝜌𝜌𝑘𝑘  according to Equation (3). The joint probability of 𝜌𝜌𝑗𝑗  and 𝜌𝜌𝑘𝑘  can be 
calculated using the law of joint probability (Kelley, 1994), as Equation (4):  
 

𝐼𝐼𝑖𝑖 = 𝐼𝐼�𝜌𝜌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐼𝐼𝑗𝑗 ∩ 𝜌𝜌𝑖𝑖𝑛𝑛𝑖𝑖−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐼𝐼𝑘𝑘� = 𝐼𝐼𝑗𝑗 × 𝐼𝐼𝑘𝑘 (4) 
 
where 𝐼𝐼𝑖𝑖 represents the probability of 𝐼𝐼𝑊𝑊𝐼𝐼𝑖𝑖. In other words, 𝐼𝐼𝑖𝑖 is the probability of one possible 240 

composition. 
 
Traversing all possible inert composition weight values in the interval between zero and the 
total waste weight of the construction waste load, and all possible inert composition volume 
values in the interval between zero and the total volume, we can obtain a data set of 𝐼𝐼𝑊𝑊𝐼𝐼 and 245 

a data set of joint probabilities. Each 𝐼𝐼𝑊𝑊𝐼𝐼 value solely corresponds to one joint probability, the 
two data sets thus form a new probability distribution regarding construction waste composition 
𝐼𝐼𝑊𝑊𝐼𝐼𝑖𝑖 and corresponding joint probability 𝐼𝐼𝑖𝑖 , as shown in Equation (5): 
 

𝐼𝐼(𝐼𝐼𝑊𝑊𝐼𝐼 = 𝐼𝐼𝑊𝑊𝐼𝐼𝑖𝑖) = 𝐼𝐼𝑖𝑖; 𝑖𝑖=1, 2, 3, …, ℎ (5) 
 250 

where ℎ refers to the finite number of 𝐼𝐼𝑊𝑊𝐼𝐼 values. Its finiteness results from manual operations 
or the precision limitation of measuring equipment. The sum of all 𝐼𝐼𝑖𝑖  is 100%. As the 
probability of 𝐼𝐼𝑊𝑊𝐼𝐼 belonging to a specific inert composition range is a cumulative probability, 
and the probability distribution of all 𝐼𝐼𝑊𝑊𝐼𝐼 values has been derived as Equation (5), we can 
calculate the probability of 𝐼𝐼𝑊𝑊𝐼𝐼 belonging to the specific inert composition range by using the 255 

cumulative distribution function (Park & Park, 2018), as in Equation (6): 
 

𝐹𝐹(𝐶𝐶𝐶𝐶) = 𝐼𝐼(𝐼𝐼𝑊𝑊𝐼𝐼𝑖𝑖 > 𝐶𝐶) = � 𝐼𝐼𝑖𝑖
𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖>𝑅𝑅

 (6) 

 
where 𝐶𝐶𝐶𝐶 is a specific inert composition range. 𝐹𝐹(𝐶𝐶𝐶𝐶) is the cumulative distribution function 
of 𝐶𝐶.  260 

 



9 
 

Figure 4 illustrates how the cumulative distribution function works. The inert composition 
range 𝐶𝐶𝐶𝐶 in the example is arbitrarily set as 𝐼𝐼𝑊𝑊𝐼𝐼𝑖𝑖 >53%. When a truckload of construction 
waste is incoming (a) with the different possible composition of inert and non-inert materials, 
the individual probabilities of inert and non-inert composition (b) will be calculated by referring 265 

to the probability distribution patterns from the big data analytics. Then, the joint probability of 
each possible composition state will be calculated (c). The combination of the joint probabilities 
of all possible composition states is visualized in (d). Finally, the cumulative probability of the 
composition states belonging to the set 𝐶𝐶𝐶𝐶 is calculated, as shown in the blue area of Figure 4 
(e). Another part (namely, the orange area) represents the cumulative probability of the 270 

composition states not belonging to the set 𝐶𝐶𝐶𝐶. The orange and blue areas in Figure 4 (e) 
together present the probability distribution of all possible composition forms in the new 
incoming construction waste load, and their sum is equal to 100%. By comparing the two 
cumulative probabilities, if ‘𝐹𝐹(𝐶𝐶𝐶𝐶)’ is greater than ‘1- 𝐹𝐹(𝐶𝐶𝐶𝐶)’, the composition of the newly 
incoming construction waste load belongs to the composition range of 𝐼𝐼𝑊𝑊𝐼𝐼𝑖𝑖; otherwise, not 275 

belongs. The estimation of waste composition is completed. 
 

 
Figure 4. An example of cumulative probability calculations under a specific inert composition 
range 280 

 
4. Development of the BD-P Model 

Based on the research methodology as explained above, this section goes further to develop the 
construction waste composition estimation model. Given that the model is the bulk density 
probability distribution enabled by big data analytics, it is referred to as a big data-enabled 285 

probability model (BD-P model). As shown in Figure 5, the model consists of three parts: 1) 
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input collection to obtain the weight and volume of a construction waste load; 2) probability 
calculation to calculate the probability of each possible composition state; and 3) composition 
estimation to ascertain the composition of the construction waste load. 
 290 

Using the BD-P model for composition estimation mainly includes two steps. The first step is 
measuring the weight and volume of construction waste. When there is an incoming truckload 
of construction waste, the volume and weight of construction waste can be easily obtained by 
using some on-site measuring equipment (see Figure 1) and combining pre-registered truck 
body specifications. According to a site observation for industrial practice, the collection of 295 

weight and volume generally takes one minute when using currently popular technologies and 
equipment. The second step is feeding the obtained weight and volume into the BD-P model 
for calculating construction waste composition.  
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 300 

Figure 5. The architecture of the construction waste composition estimation model (BD-P 
model) 
 
5. Model Validation 

This section describes the experiments conducted to validate the BD-P model. It includes 305 

constructing ground truth data set, determining evaluation criteria for model performance, and 
analyzing experimental results. 
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5.1 Constructing the “ground truth”  
Performance testing of the BD-P model requires multiple composition-known construction 310 

waste loads as ground truth data. In this study, raw ground truth data is collected from a 
construction waste sorting facility (TKO137SF) in Hong Kong. This facility is designated to 
receive and sort construction waste loads containing more than 50% inert composition by 
weight (HKEPD, 2008). The admission system installed at the entrance of the facility captures 
information about an incoming waste load to judge whether it contains more than 50% inert 315 

composition by weight, and therefore whether to accept or reject the waste load. The admission 
system will integrate all information regarding the waste load into a disposal record no matter 
the waste load being rejected or accepted. A complete record contains 37 variables, including 
total weight when the truck enters, weight when the truck exits, vehicle number, final decision 
about acceptance or rejection, waste bulk height, waste load photos, permitted gross vehicle 320 

weight (PGVW) of the hauling truck, facility name, date, and so on. We collected 22,800 such 
records, covering all construction waste load disposal data at TKO137SF from September to 
November 2019. The data set comprises 2,278 records for rejected waste loads (i.e., inert 
composition weight less than 50% of total waste weight), and 20,522 records for accepted waste 
loads (i.e., inert composition weight more than 50% of total waste weight). It is important to 325 

note that the compositions of 251 loads among the accepted construction waste loads were 
manually checked at the facility by experienced inspectors. 
 
The collected data is used to construct a ground truth data set including positive and negative 
data. In this study, the positive data refers to waste loads containing more than 50% inert 330 

material by weight (i.e., 𝐼𝐼𝑊𝑊𝐼𝐼 >50%), and the negative data refers to waste loads containing 
not more than 50% inert material by weight (i.e., 𝐼𝐼𝑊𝑊𝐼𝐼 ≤50%). In general, a larger size of the 
ground truth dataset can promise a more reliable model accuracy (Krig, 2016), but collecting 
more ground truth data is usually limited by time and cost viability, e.g., the manual separation 
and inspection as at TKO137SF. A proper size is thus more feasible than a large size. Referring 335 

to the method proposed by Sharma et al. (2017), this study determines the proper ground truth 
dataset size when the model accuracy no longer changes significantly, i.e. stabilized or saturated. 
Our preliminary experimental analyses found that the model accuracy starts to be stable when 
the ground truth dataset size increases to around 600 data points with balanced positive and 
negative data. Therefore, this study decided to construct a ground truth dataset containing 340 

around 300 positive data and 300 negative data. 
 
We can confidently adopt the 251 manually checked loads as positive ground truth data. For 
the negative data, we selected 450 construction loads from the chronological 2,278 rejected 
loads by the Equidistant Sampling method. However, we cannot directly use them as negative 345 

ground truth data due to the auditing report finding that the admission system is not 100% 
accurate. Therefore, using the admission system judgement as a reference, we combine the 
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waste weight, waste bulk height, waste load photos, and domain knowledge to manually check 
each rejected waste load’s state, and correct it when finding the admission system’s judgment 
wrong (see Figure 7 for an example). Through these, 339 raw positive data records and 362 raw 350 

negative data records are included in the ground truth data set. Finally, the data is further 
cleansed and a ground truth dataset containing 604 records is generated for model validation 
(see Figure 8). 
 

 355 

Figure 7. An example of the manual check and correction (Note: for this truck type, the HKEPD 
admission system makes the >50% inert composition decision on the basis of waste height 
<1.6m and waste weight ratio >18% [HKEPD, 2019]) 
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Figure 8. The weight and volume distribution of 604 ground truth data 360 

 
5.2 Determining evaluation criteria for model performance 
Accuracy, speed, complexity, and receiver operating characteristic (ROC) curve are widely 
used criteria for prediction model performance evaluation (Alpaydin, 2020; Yuan et al., 2020). 
For construction waste composition estimation, a model with higher estimation accuracy and 365 

speed is preferred for practical applications. Therefore, three indicators, namely accuracy, ROC 
curve, and speed are chosen as the BD-P model performance evaluation metrics in this study. 
 
Estimation accuracy has two calculation methods. Mean absolute percentage error (De 
Myttenaere et al., 2016) is used when the estimated result is numerical, while Confusion Matrix 370 

method (Alpaydin, 2020) is suitable when the estimated result is not numerical. The estimation 
output in this study is not numerical, as shown in Figure 5 (Part III). Thus, the confusion matrix 
method as shown in Equation (7) is adopted to calculate accuracy: 
 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
𝐴𝐴𝐼𝐼 + 𝐶𝐶𝑅𝑅

𝐴𝐴𝐼𝐼 + 𝐶𝐶𝐼𝐼 + 𝐶𝐶𝑅𝑅 + 𝐴𝐴𝑅𝑅
× 100% (7) 

 375 

where AP is the number of accepted positive ground truth data. RN is the number of rejected 
negative ground truth data. RP is the number of rejected positive ground truth data. AN is the 
number of accepted negative ground truth data. Acceptance means the model-estimated inert 
waste composition is in the > 50% by weight range, while rejection means it is not. AP and RN 
are correct estimation results. RP and AN are incorrect estimation results. 380 

 
The ROC curve is a graphical plot that illustrates the diagnostic ability of a classification model 
at all classification thresholds (Fawcett, 2006). This curve presents two parameters: 1) the true 
positive rate, which is equivalent to the accepted positive rate (APR) in this study; and 2) the 
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false positive rate, which is equivalent to the accepted negative rate (ANR) in this study. APR 385 

reflects the model’s sensitivity (or detectable rate) while ANR reflects the model’s fall-out rate 
(Metz, 1978). Equation (8) illustrates their calculation methods. Additionally, the index Area 
Under Curve (AUC) derived from the ROC curve is usually used to quantitatively evaluate the 
model’s diagnostic ability. The AUC value is equivalent to the probability that a randomly 
chosen positive sample is ranked higher than a randomly chosen negative sample (Fawcett, 390 

2006). 
 

𝐴𝐴𝐼𝐼𝐶𝐶 =
𝐴𝐴𝐼𝐼

𝐴𝐴𝐼𝐼 + 𝐶𝐶𝐼𝐼
 

𝐴𝐴𝑅𝑅𝐶𝐶 =
𝐴𝐴𝑅𝑅

𝐴𝐴𝑅𝑅 + 𝐶𝐶𝑅𝑅
 

(8) 

 
Model speed refers to the time consumption of conducting one complete computation for waste 
composition estimation. It mainly depends on the model’s complexity, the computation power 395 

of used computers, and the weight and volume of construction waste loads. This study uses the 
consumed time for completing the computation of one construction waste load (namely, second 
per load) to represent model speed. 
 
5.3 Conducting experiments and analyzing results 400 

The BD-P model is coded into a computer program using MATLAB. The constructed 604 
ground truth data are fed into the program one by one for experimental composition estimation. 
During the procedure for exploring the possible inert and non-inert composition ratio (Figure 
5, Part I), the decimal places of the randomly selected inert composition weight and volume are 
set as three, usually the maximum for practical weight and volume measuring when using 405 

tonnes and cubic meters as units. The input composition range 𝐶𝐶𝐶𝐶  (Figure 5, Part III) is 
𝐼𝐼𝑊𝑊𝐼𝐼 >50% according to the classification of ground truth data. It means that the BD-P model 
will accept or reject a construction waste load if it estimates the inert composition weight range 
as more or less than 50%, respectively.  
 410 

Figure 9 presents the experimental results of using the BD-P model to estimate the 604 waste 
loads. Figure 9 (a) shows that 252 of 294 positive data are accepted by the BD-P model and 
293 of 310 negative data are rejected. These are correct estimations. However, the model 
incorrectly rejected 39 construction waste loads which actually meet the composition range 𝐶𝐶𝐶𝐶, 
and incorrectly accepted 20 loads which actually do not meet the composition range 𝐶𝐶𝐶𝐶. To 415 

sum up, of the 604 construction waste loads, the BD-P model correctly estimated 545 loads and 
incorrectly estimated 59. The model’s estimation accuracy is 90.2%. Figure 9 (b) is the ROC 
curve of the BD-P model. An AUC of 0.8775 demonstrates the good diagnostic ability of the 
model. Figure 9 (c) indicates the median of the BD-P model’s estimation speed is 52 seconds 
per construction waste load.  420 
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Figure 9. The experimental results of using the BD-P model to estimate the composition of the 
604 waste loads  
 425 

Furthermore, Figure 10 visualizes the estimated results of the 604 construction waste loads by 
using the BD-P model, where the input composition range 𝐶𝐶𝐶𝐶 is 𝐼𝐼𝑊𝑊𝐼𝐼 >50%. Of particular 
interest is that there has an obvious division line in the estimated results. It implies a linear 
boundary. Generally, using a linear function would have a significantly smaller computation 
burden than using the BD-P model. Therefore, the research goes on to investigate the feasibility 430 

of using the linear function of this division line to substitute the BD-P model for composition 
estimation. Based on the output results by the BD-P model, we first use the Perceptron Learning 
algorithm (Stephen, 1990) to derive the optimal linear decision boundary function,  as Equation 
(9): 
 435 

�𝑊𝑊 − 0.4152𝑉𝑉 − 0.2944 > 0           𝑌𝑌𝑌𝑌𝑌𝑌;
𝑊𝑊 − 0.4152𝑉𝑉 − 0.2944 < 0,           𝑅𝑅𝑁𝑁. (9) 

 
where 𝑊𝑊 is the total weight of a construction waste load. 𝑉𝑉 is its total volume. Yes means its 
estimated inert waste composition weight exceeds 50%. No means it does not. Then, we use the 
function to re-estimate the 604 constructed ground truth data. The experimental result indicates 
an estimation accuracy of 88.8%, slightly lower than the BD-P model’s 90.2% but still 440 

acceptable. However, the computation speed of the linear function is about 130 times faster 
than that of the BD-P model, changing from an average of 52 seconds to 0.4 seconds per case. 
Therefore, it is recommendable to use the linear decision boundary function informed by the 
BD-P model to estimate construction waste composition. 
 445 
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Figure 10. Composition estimation model results (accuracy: 90.2%) 
 
6. Discussion 
The strengths of the BD-P model are multifold. Firstly, it is easy to use. One can simply measure 450 

the weight and volume of a load of waste to calculate its bulk density, just like we measure 
one’s body weight and height to calculate the BMI. Secondly, the BD-P model is easy to adjust 
for different criteria. The criterion for inert component waste proportion adopted in the 
experiments of this study is set at 50%, but it can be adjusted to other real-life criteria without 
necessarily changing the underlying BD-P modelling method. Thirdly, the accuracy of the BD-455 

P model is at an acceptable level: 90.2% using the original BD-P model and 88.8% using the 
linear model generated from the BD-P model. The accuracies are slightly lower than the 
currently highest accuracy of construction waste composition estimation. Davis et al. (2021) 
achieved an accuracy of 94% by using a deep learning-enabled photogrammetry approach. 
Nevertheless, the BD-P model only requires two easy-to-obtain inputs: the weight and volume 460 

of construction waste loads. This saves much manual operation required by previous 
approaches, e.g., spreading waste to an even and thin depth for photogrammetry-based 
approaches, or pre-sorting construction waste into different composition categories for 
statistical sampling approaches. Meanwhile, the BD-P model can complete the computation at 
a speed of around 52s per construction waste load. Taking the time of measuring the waste 465 

weight and volume by using currently popular technologies and equipment (i.e., around one 
minute) into consideration, the BD-P model is expected to estimate the composition of a 
truckload of construction waste in two minutes. 
 
The accuracy and speed achieved by the BD-P model make it highly applicable for real-life 470 

applications. In February 2021, we conducted a workshop with governmental officials, site 
inspectors, and system operators who are managing the CWM facilities in Hong Kong. The 
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BD-P model was generally accepted by the experts and stakeholders, who support us with more 
ground truth data to fine-tune the model towards 100% accuracy. This research has practical 
value to not only CWM facility managers but also construction contractors and waste hauliers. 475 

These latter stakeholders also face the difficulty of reasonably estimating the composition of 
their waste loads and deciding proper disposal destinations.  
 
The biggest novelty of this research is the harmonization of traditional probability theories and 
modern big data analytics. There is a popular debate that big data is able to paint a fuller picture 480 

of a subject matter, therefore, undermine the necessity of traditional theories built upon 
probability. This research proves that big data is indeed able to inform a fuller spectrum of 
something but goes further to show that big data analytics and probability theories are allies 
instead of adversaries. The research also provides a compelling case of using probability 
distribution obtained from big data for predictive analysis. Traditional statistical approaches 485 

tend to find an existing theoretical probability distribution model (e.g., normal, lognormal, or 
Poisson distribution model) to fit the given data, and then use the fitted model for predictive 
analyses. However, in the real world, it is not often feasible to fit a theoretical distribution model. 
Instead, this study uses the raw probability distribution for predictive analysis without fitting 
the underlying theoretical probability model. The key is that the saturated big data set reveals 490 

the total spectrum of the probability distributions.  
 
Nevertheless, the BD-P model also has several shortcomings. Firstly, it can only classify the 
construction waste into inert and non-inert portions. It is unable to identify specific construction 
materials (e.g., concrete, wood, vegetation, etc.) in a load of construction waste. Further 495 

research can select a more detailed composition classification or add extra information (e.g., 
images) to improve the estimation. Secondly, the BD-P model is not simply transferable to 
other economies with different construction techniques and waste composition characteristics. 
Necessary adjustments are needed in line with different data sets and admissibility criteria. 
However, as mentioned above, the underlying modelling is the same.  500 

 
7. Conclusions 

With an aim to solve a real-life conundrum as faced by many construction waste management 
facilities, this research developed a big data-probability (BD-P) model to quickly and accurately 
estimate the composition of construction waste for these facilities. The yardstick of the BD-P 505 

model is the convergent interval and stable probability distribution of construction waste bulk 
density, which are derived from big data analytics using 4.27 million truckloads of construction 
waste. Just two easy-to-obtain inputs, waste weight and waste volume, are required when 
applying the BD-P model to estimate construction waste composition. Experimental tests were 
conducted to validate the BD-P model. A ground truth data set consisting of 604 construction 510 

waste loads was constructed in-house and fed into the BD-P model to test its estimation 
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performance. Results revealed a model accuracy of 90.2%, Area Under Curve (AUC) of 0.8775, 
and speed of around 52 seconds per construction waste load.  
 
Furthermore, to optimize the efficiency of composition estimation, this study proposes using 515 

the fitted linear function of the decision boundary generated by the BD-P model to substitute 
the BD-P model for composition estimation. An additional experiment was conducted to 
validate the proposal. Experimental results showed an accuracy of 88.8%, slightly lower than 
the BD-P model’s 90.2% but still acceptable. However, the model speed is about 130 times 
faster than that of the BD-P model, changing from around 52s to 0.4s per construction waste 520 

load, proving the feasibility of the proposal. Therefore, both the BD-P model and the linear 
model have great promise for improving the operations of CWM facilities through rapid and 
accurate waste composition estimation. 
 
The major novelty of this research is not only to showcase the power of big data to reach a more 525 

comprehensive truth of a subject, but also to illustrate that combining traditional probability 
theories and big data analytics can catalyse many powerful applications that cannot be done 
before. This study makes a methodological contribution in the context of data science. The 
developed BD-P model provides a method case of harnessing the unfitted probability 
distribution derived from big data analytics for predictive analysis. With big enough data to plot 530 

the probability distribution of a target event, it is not necessary to deduce the underlying 
theoretical probability model for an event’s probability. Instead, the unfitted probability 
distribution can be used for predictive analysis directly. Moreover, future studies are 
recommended to strengthen the estimation model so that it can accurately estimate the 
quantities of specific construction waste materials (e.g., concrete, bricks, rocks, and timber).  535 
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