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Abstract 
Urban material stock (UMS) represents an elegant thinking by perceiving cities as a repository 
of construction materials that can be reused in the future, rather than a burdensome generator 10 
of construction and demolition waste. Many studies have attempted to quantify UMS but they 
often fall short in accuracy, primarily owing to the lack of proper quantification methods or 
good data available at a micro level. This research aims to develop a simple but satisfactory 
model for UMS quantification by focusing on individual buildings. Generally, it is a ‘bottom-
up’ approach that uses building features to proximate the material stocks of individual buildings. 15 
The research benefits from a set of valuable, ‘post-mortem’ ground truth data related to 71 
buildings that have been demolished in Hong Kong. By comparing a series of machine 
learning-based models, a multiple linear regression model with six building features, namely 
building type, building year, height, perimeter, total floor area, and total floor number, is found 
to yield a satisfactory estimate of building material stocks with a mean absolute percentage 20 
error of 9.1%, root-mean-square error of 474.13, and R-square of 0.93. The major contribution 
of this research is to predict a building’s material stock based on several easy-to-obtain building 
features. The methodology of machine learning regression is novel. The model provides a 
useful reference for quantifying UMS in other regions. Future explorations are recommended 
to calibrate the model when data in these regions is available.  25 
 
Keywords 
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 30 
1. Introduction 
An urban material stock (UMS) is the accumulation of construction materials (e.g., bricks, 
concrete, timber, or steel) used in buildings and infrastructure within the urban area (Manelius 
et al., 2019; Tanikawa & Hashimoto, 2009). UMS plays a crucial but underappreciated role in 
shaping the use of material and energy resources (Krausmann et al., 2017). Research interest 35 
in UMS has grown in recent years. The UMS changes can be used as a proxy for understanding 
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urban metabolism (Schandl et al., 2020; Tanikawa & Hashimoto, 2009), and as an indicator for 
calculating embodied greenhouse gas emissions. UMS is considered a precursor for predicting 
future material demand and supply, and (Gassner et al., 2020; Huang et al., 2013). In this 
perception, urban material is a future anthropogenic resource deposit temporarily stocked in 40 
cities that can be reused or recycled in the future (Mesta et al., 2019; Nasir et al., 2021), rather 
than passively treating cities as material and energy consumers, or construction and demolition 
(C&D) waste generators (Marcellus‐Zamora et al., 2016). The UMS is thus considered a 
proactive approach aligning with the global pursuit of sustainable development and a circular 
economy (Gontia et al., 2020; Haas et al., 2015).  45 
 
Given the significant role of UMS, researchers have proposed various methods to measure it. 
For instance, Müller (2006) developed a demand-driven approach to quantify the concrete 
stock of the Netherlands’ dwelling buildings. Tanikawa and Hashimoto (2009) proposed a 
spatial material stock analysis approach based on 4-dimensional geographic information 50 
system (4D-GIS) data. Fishman et al. (2014) proposed a novel method to quantify national 
material stock based on historical material flow data. Several recent studies have also tried to 
use a building component inventory-based approach to estimate material stock (de Tudela et 
al., 2020; Heeren & Hellweg, 2019; Heisel et al., 2022). Notably, studies have emerged to 
review and categorize UMS quantification methods. For example, Augiseau and Barles (2017) 55 
identify two main methodological approaches: bottom-up stock analysis and top-down 
retrospective stock analysis using a flow-driven model. Wiedenhofer et al. (2019) suggested a 
new classification: stock-driven vs. inflow-driven. More reviews and categorizations on UMS 
quantification methods can refer to Lanau et al. (2019) and Nasir et al. (2021). 
 60 
Whilst existing methods have made important contributions to UMS quantification, they also 
suffer from shortcomings, mainly related to estimation accuracy. For both bottom-up and top-
down approaches, the crux seems to lie in the accurate estimate of building material stock 
(BMS) or infrastructure material stock (IMS) at an individual level. By summing up the BMS 
and IMS in the urban area, a UMS can be derived. Nevertheless, the data to verify the BMS or 65 
IMS is often not available unless a building or an infrastructure is demolished, and its embodied 
materials are segregated and weighed. Such ‘post-mortem’ analyses are simply unrealistic. It 
is thus not surprising to see previous studies giving a possible error range for the estimate based 
on experience (Guo et al., 2019), or indirectly calibrating the accuracy level against studies in 
other regions (Mastrucci et al., 2017; Nasiri et al., 2021). The research on UMS quantification 70 
will see a breakthrough if a method is found to estimate the BMS or IMS with reasonable 
accuracy based on visible, easy-to-obtain building or infrastructure features.  
  
This research aims to develop a novel UMS quantification approach based on easy-to-obtain 
building features (e.g., explicit building geometries, floor areas, and so on). As mentioned 75 
earlier, the repository of construction materials in the urban built environment comprises two 
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sectors: buildings and infrastructure. As the first step, this research focuses on buildings. The 
research benefits from a valuable data set related to waste generation and features of 71 
buildings demolished in Hong Kong. The remainder of the paper is organized as follows. 
Subsequent to this introductory section, Section 2 reviews studies on UMS quantification. 80 
Section 3 introduces the research methodology and Section 4 describes model development 
and validation. Section 5 discusses the research contributions and shortcomings, and 
conclusions are drawn in Section 6. 
 
2. Urban material stock quantification 85 
A wealth of research has been conducted to quantify UMS. Following the widespread 
categorizations as adopted in the literature (see Table 1), we classified previous approaches 
into two types, namely top-down approaches and bottom-up approaches.  
 
Table 1. Approaches for quantifying urban material stock 90 

Type and basic 
principle  

Variable  Variable gauging solution Representative study 

Top-down 
approaches: 
MS = I−O 

Material 
inflow (I, 
unit: tonne) 

Directly extracting from material flow 
statistic reports 

Fishman et al. (2014) 

Multiplying construction activity amount 
(construction floor area or construction 
expense) by material input rate (material 
weight per floor area or expense) 

Hashimoto et al. (2009)) 

Material 
outflow (O, 
unit: tonne) 

Multiplying material inflows by assumed 
stock survival probability distributions 
(e.g., normal distribution) 

Bergsdal et al. (2007) 

Summing up C&D waste estimated based 
on waste generation rates 

Wang et al. (2019) 

Bottom-up 
approaches: 
MS = ∑ 𝐺𝐺𝐺𝐺𝐺𝐺𝑁𝑁

𝑖𝑖=1 × 
MI 

Number of 
cohorts (N, 
unit: cohort) 

Summing all building clusters divided by 
one or multiple criteria (e.g., usage type, 
building year, structure type). 

Bergsdal et al. (2007); 
Ergun and Gorgolewski 
(2015); Mao et al. 
(2020); Miatto et al. 
(2019) 

Gross floor 
area (GFA, 
unit: m2) 
 

Multiplying population by floor area per 
capita (exclusive for residential buildings) 

Müller (2006) 

Directly extracting from governmental 
building area statistic reports 

Ortlepp et al. (2016) 

Extracting data from digital databases 
(e.g., GIS database, land-use database, 
Google Maps database, aerial 
photographs, earth-observation raster 
data) and then transforming them to the 
gross floor area 

Haberl et al. (2021); 
Marcellus‐Zamora et al. 
(2016); Tanikawa and 
Hashimoto (2009); 
Wang et al. (2019) 

Multiplying night-time light radiance by 
transformation coefficients 

Peled and Fishman 
(2021) 



4 
 

Material 
intensity (MI, 
unit: 
tonne/m2) 

Directly extracted from public data (e.g., 
statistics reports, building specifications, 
design codes; or construction handbooks) 

Hashimoto et al. (2007); 
Mesta et al. (2019); 
Tanikawa et al. (2015) 

Interviewing experts Bergsdal et al. (2007) 
Calculating based on building documents 
(e.g., drawings and bill of quantities) and 
sample measuring 

Ergun and Gorgolewski 
(2015) 

 
2.1 Top-down approaches 
Top-down approaches estimate construction material stock by calculating the difference 
between material inflows and outflows; that is, construction materials input and output from 
in-use buildings, respectively. There are two ways to estimate material inflows: 1) directly 95 
extracting them from material inflow statistics, and then, 2) multiplying the quantity of 
construction activities by a material input rate. Material outflows can be obtained by: 1) 
multiplying material inflows by an assumed stock survival probability distribution; or 2) adding 
up the construction waste quantity from new C&D activities. These approaches are mainly used 
to derive the material stock of countries or regions, and uncover the evolution of construction 100 
material stocks over a period by combining temporal material flows. 
 
2.2 Bottom-up approaches 
Bottom-up approaches mean to sum up the total material bank building by building. It involves 
three variables: 1) number of building cohorts, 2) gross floor area (GFA) of each building 105 
cohort, and 3) typical material intensity of each building cohort. Since no two buildings in a 
building cohort have the same material stock, ideally this would be quantified building by 
building. However, the cost to do so would be prohibitively high. In a trade-off between 
accuracy and cost, previous studies chose to classify buildings into multiple cohorts according 
to certain criteria such as building age, usage type, and structure type (Kleemann et al., 2017; 110 
Mesta et al., 2019).  
 
Researchers have proposed various methods to calculate GFA. Müller (2006) proposed to 
multiply the population by floor area per capita to estimate the GFA of residential buildings. 
Increasingly, governments start to issue building area statistical reports, from which researchers 115 
can directly extract GFA data for their uses (Han & Xiang, 2013; Ortlepp et al., 2016). Urban 
digital databases (e.g., GIS, building footprint databases) also enable researchers to aggregate 
GFA via simple data extraction and transformation (Haberl et al., 2021; Marcellus‐Zamora et 
al., 2016). Peled and Fishman (2021) innovatively used night-time light radiance data to 
calculate GFA in Europe.  120 
 
Material intensity, or ‘building material composition’, describes the construction material 
weight per GFA. It represents the typical material composition of each building cohort. One 
method used to obtain material intensities is to estimate based on public data, including 
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building specifications (Tanikawa & Hashimoto, 2009), design codes (Han & Xiang, 2013), 125 
and construction handbooks (Gao et al., 2020). When these public data sets are unavailable or 
incomplete, researchers tended to interview local experts (Bergsdal et al., 2007; Mesta et al., 
2019). The third method is to calculate material intensities based on building documents 
gathered, such as drawings (Kleemann et al., 2017; Nasiri et al., 2021) and bill of quantities 
(Mao et al., 2020), with site visits to collect supplementary data (Surahman et al., 2017). Since 130 
cost and time limits, researchers usually sampled one or several representative buildings from 
different cohorts, and then applied the abovementioned methods to derive representative 
material intensities.  
 
2.3 Strengths and weaknesses of existing approaches 135 
Top-down approaches are convenient and efficient. However, they involve simplified building 
lifespan assumptions (Fishman et al., 2014), and estimated coefficients, e.g., material input rate 
(Hashimoto et al., 2009), or waste generation rate (Wang et al., 2019), which may lead to large 
deviations in the final estimate. Also, they rely heavily on the availability of statistical data 
about material inflows or construction activities. Therefore, they are mainly applicable for 140 
national or regional material stock quantification.  
 
By comparison, bottom-up approaches can quantify material stocks at a micro spatial scale. 
However, it also has two weaknesses. The typical material intensity of each building cohort is 
usually derived based on one or several sampled building representatives. Sampling 145 
representative buildings inevitably leads to bias in the quantification result due to building 
heterogeneity (Mollaei et al., 2021; Stephan & Athanassiadis, 2017). Furthermore, no research 
explains why a building is representative (Brøgger & Wittchen, 2018). Inappropriate selection 
of representative buildings will also cause inaccurate UMS quantification. Therefore, in short, 
the crux is the quantification of BMS. Another weakness of the bottom-up approaches is that 150 
little research has derived material intensities by using real-life material stock data. This may 
be due to the difficulty of weighing all construction materials in a building.  
 
3. Methodology  
3.1 The rationale 155 
The rationale of our BMS quantification approach is intuitive: there should be a correlation 
between building material stock and building features. Generally, for the geometrical features 
(i.e., building height, floor area, perimeter, and storeys), any increase will naturally result in a 
rise in BMS. Some semantic features also impact BMS. For instance, Mao et al. (2020) and 
Kleemann et al. (2017) demonstrated that building age is related to BMS, as different building 160 
materials and codes may have been adopted in different eras. Mastrucci et al. (2017) and Lanau 
and Liu (2020) showed that BMS also depends on building usage (e.g., residential or 
commercial). Usually, these visible building features are easy to obtain, e.g., by referring to 
drawings, building approvals, or simple surveys. If a reliable correlation between a building’s 
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features and its embodied material stock can be ascertained, the BMS can be accurately 165 
estimated rather than waiting for the building to be demolished and its materials to be 
segregated and weighed.  
 
3.2 Research methods 
Figure 1 illustrates our proposed BMS quantification approach. At the core of the approach is 170 
machine learning (ML) regression. According to Ij (2018), traditional statistical regression 
mainly infers and interprets the relationships between the dependent variable (e.g., the BMS) 
and one or more independent variables (e.g., building features). In the end, a human 
interpretable model like 𝑦𝑦 = 𝑎𝑎𝑖𝑖𝑥𝑥𝑖𝑖 + 𝑏𝑏  or non-linear relationships will be derived. Unlike 
traditional statistical regression, ML regression aims to construct a generalizable model that 175 
can accurately predict the unobserved output (Ij, 2018). It is largely a data-driven approach by 
choosing a regression algorithm and harnessing the power of data. In other words, it may lead 
to a satisfactory predicting model that can be applied for specific objectives such as BMS 
estimation, although the model itself may not be human-interpretable. Given the primary aim 
of the research, ML regression is chosen.  180 
 

 
Figure 1. Framework of the proposed UMS quantification approach 
 
 185 
3.3 Data collection 
Two data sets from the same batch of buildings are needed: construction material stocks (by 
weight) and building features. For the former, in 2005 the Hong Kong Environmental 
Protection Department (HKEPD) established a Construction Waste Disposal Charge Scheme 
to manage C&D waste. According to the Scheme, any building demolition project with a 190 
contract sum of more than HK$ 1 million must apply for a sole disposal account from the 
HKEPD. This account records the features of the demolition project (e.g., location, client, and 
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contract sum) and the details (e.g., weight-in, weight-out) of every truckload of demolition 
waste material disposed of at government facilities. 
 195 
Figure 2 illustrates the C&D waste disposal and recording system in Hong Kong. Because the 
Scheme adopts a closed-loop management approach, any piece of demolished waste, unless 
properly reused or recycled, must be disposed of at government facilities and use the account 
opened with the HKEPD (Yuan et al., 2013). We thus consider that the total waste materials 
derived from an account accurately represent the material stock of that building, with a caveat 200 
that a few materials might have been reused or recycled elsewhere and hence not been properly 
recorded in the system. We obtained the accounts of 433 demolition projects implemented 
between 2011 and 2020 with a contract sum larger than HK$1 million. We then derived the 
weight of waste materials for individual buildings. 
 205 

 
Figure 2. The construction and demolition waste disposal and recording system in Hong Kong 
 
Then, we acquired the building feature data. Based on the building location recorded in the 
accounts, we first used Google Earth 3D views to count total floor number (above ground) of 210 
the building. Building height, floor area, and perimeter were then derived by using iB1000 
(HKLD, 2022a), which is a 1:1,000 digital topographic map issued by the Lands Department 
providing address, hydrography, land coverage, place of interest, relief, transportation, and 
utility information of all buildings in Hong Kong. For those buildings that had been wiped from 
the iB1000 database, their heights, floor areas, and perimeters were obtained from Google 215 
Earth and Google Maps. To derive building usage types (i.e., residential or non-residential), 
we referred to the Planning Department’s land utilization type database (HKPD, 2021). 
Building ages were gathered via housing agencies’ websites.  
 
Figure 3 shows the data collection process. We finally collected a data set of 71 buildings. 220 
Figure 4(a) visualizes the structure of collected data. The data set contains the building stocks 
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and six easy-to-obtain building features: (1) building year, (2) total floor number, (3) building 
height, (4) total floor area, (5) building perimeter, and (6) building usage type. Given Hong 
Kong’s hilly terrain and steep slopes, it is a common practice to build a podium and then 
construct multiple high-rise towers on it. Therefore, this study further divides a building into 225 
two parts: building blocks and podium. When a building has no podium, the value of the 
podium variable is set to zero.  

 
Figure 3. An illustration of the data collection processes  
 230 
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Figure 4. (a) The structure of collected data; (b) The data distribution under four common 
building categorization features (underlying data for Figure 4b are available in Table S2 of 
Supporting Information S1) 
 235 
At a glimpse, the 71 buildings consist of 44 residential and 27 non-residential buildings. Their 
building years range from 1930 to 1999 with most between 1950 and 1980. 65 out of the 71 
buildings have no podium. Building heights range from 4.0m to 88.8m and the total floor 
numbers range from 1 to 26. The building material stocks range from 299 to 9,967 tonnes with 
most concentrating between 840 and 2,800 tonnes. It is noticed that the material stocks have 240 
no detailed composition information, e.g., inert or non-inert; concrete, copper, steel, etc.). 
Figure (4)b presents the data distribution in line with four building features.  
 
4. Model development 
4.1 Selecting building features 245 
Building features are independent variables. Previous studies indicate that BMS is correlated 
with building geometrical features such as GFA (Nasiri et al., 2021), building height 
(Kleemann et al., 2017), and perimeter-area ratio (i.e., perimeter per unit floor area) (Stephan 
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& Athanassiadis, 2017); as well as semantic features such as building type (e.g., residential, 
non-residential) (Gontia et al., 2019). We also referred to the building features used in other 250 
research domains, such as building energy consumption prediction (Fan et al., 2014; 
Seyedzadeh et al., 2018) and C&D waste estimation (Lu et al., 2021; Maués et al., 2020), 
particularly on demolition waste generation (Chen & Lu, 2017; Lu et al., 2016). By combining 
the previous literature with the data presented in Figure 4, we sourced 33 building features that 
might be relevant to BMS quantification (see Table 2). In addition, we were aware of the 255 
presence of other potential features, such as roof type, façade material, and so on. However, 
this research does not consider them due to the data availability limitation. 
 
Table 2. The 33 building features relevant to BMS quantification 

Type Name  Symbol 
Data collection or 

calculation methods 

Original 

variables 

Building block height Hblock
 

Collecting from the first 

sources 

Building block floor area FAblock 

The number of building block floors FNblock 

Building block perimeter Pblock 

Building podium height Hpodium
 

Building podium floor area FApodium 

The number of building podium floors FNpodium 

Building podium perimeter Ppodium 

Building year Ybuilt 

Building type (residential vs. non-residential) UT 

Composite 

variables 

Building block floor height FHblock Hblock÷FNblock 

Building block façade area FCAblock Pblock×Hblock
 

Gross volume of building block GVblock FAblock×Hblock 

Gross floor area of building block GFAblock FAblock×FNblock 

Height-floor area ratio of building block H/FAblock Hblock÷FAblock 

Envelope-gross volume ratio of building block E/GVblock (FCAblock+FAblock)÷GVblock 

Perimeter-floor area ratio of building block P/FAblock Pblock÷FAblock 

Building podium floor height FHpodium Hpodium÷FNpodium 

Building podium façade area FCApodium Ppodium×Hpodium
 

Gross volume of building podium GVpodium FApodium×Hpodium 

Gross floor area of building podium GFApodium FApodium×FNpodium 

Height-floor area ratio of building podium  H/FApodium Hpodium÷FApodium 

Envelope-gross volume ratio of building podium E/GVpodium (FCApodium+FApodium)÷GVpodium 

Perimeter-floor area ratio of building podium P/FApodium Ppodium÷FApodium 

Total building height Htotal Hblock+Hpodium
 

Total number of floors FNtotal FNblock+FNpodium 
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Total façade area FCAtotal FCAblock+FCApodium 

Gross floor area GFAtotal GFAblock+GVpodium 

Gross building volume GVtotal GVblock+ GVpodium 

Mean floor height FHmean (FHblock+FHpodium)÷2 

Mean height-floor area ratio H/FAmean (H/FAblock+ H/FApodium)÷2 

Mean envelope-gross volume ratio E/GVmean (E/GVblock+ E/GVpodium)÷2 

Mean perimeter-floor area ratio P/FAmean (P/FAblock+ P/FApodium)÷2 

Notes: (1) For the definition of features such as block, and podium; as well as the calculation method of building 260 
height, perimeter, and floor area, please refer to HKLD (2022b); (2) We have conducted a preliminary regression 

prediction experiment, which demonstrated that re-categorizing the original six building types into two categories 

is optimal.  

 
Of the features, 10 are original variables derived from original data collection while the other 265 
23 features are composite variables, which means they are made up of two or more variables 
or measures that are highly related to one another. Using composite variables is a common 
practice for organizing multiple highly correlated variables into more concise yet meaningful 
ones (Song et al., 2013). Among the 33 feature variables, some of them are cross-correlated 
(e.g., Hblock and FNblock). In statistical regression, the cross-correlation may result in the 270 
multicollinearity problem, affecting the coefficient estimation of independent variables. For 
regression prediction performance, however, one does not need to worry about the specific role 
of independent variables and their multicollinearity. According to Kutner et al. (2004), 
multicollinearity would not change regression prediction performance.  
 275 
It is not necessarily a case of the more variables, the better a model performs (Guyon & 
Elisseeff, 2006). It is thus critical to choose appropriate variables for an ML regression. There 
are three methods for variable selection. The Filter method uses variable ranking techniques 
for variable selection (Chandrashekar and Sahin (2014). A suitable ranking criterion (e.g., 
Pearson’s r) is used to score variables and a threshold is used to remove variables below the 280 
threshold. Its drawbacks are that the selected variables might not be optimal, and a redundant 
subset might be obtained. The Wrapper method decides the best variable subset by comparing 
the real model performance when inputting different variable combinations. Its shortcoming is 
the huge computation cost to exhaust all feature combinations. Finally, the Embedded method 
also compares the real model performance, but it integrates feature ranking techniques to 285 
optimize the computation cost. In this study, we adopt the Embedded method to investigate the 
best combination of variables (i.e., building features). The general procedure of the Embedded 
method can refer to the work by Lal et al. (2006) and Chandrashekar and Sahin (2014).   
 
4.2 Choosing machine learning regression algorithms 290 
To determine an appropriate ML regression algorithm, the types of output variables must be 
considered. For a categorical variable with different logistic values, logistic regression 
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algorithms are recommended (Nasteski, 2017). When the variables are continuous, there are 
six types of ML regression algorithms: multiple linear regression, support vector machine 
regression, tree regression, Gaussian process regression, tree regression ensemble, and 295 
regression neural network algorithms (Fahrmeir et al., 2021). In this study, the dependent 
variable (i.e., material stock of buildings) is continuous. However, it is unknown which one of 
the six algorithms is better. Therefore, we compared these regression algorithms to ascertain 
the one with the best predicting performance. 
 300 
The comparison requires one or more model evaluation criteria. Five criteria, namely mean 
squared error (MSE), root-mean-squared error (RMSE), mean absolute error (MAE), mean 
absolute percentage error (MAPE), and R-square, are usually used to evaluate the predicting 
performance of regression models (Emmert-Streib & Dehmer, 2019). In this study, the ML 
regression model is expected to estimate the BMS with high accuracy. Thus, MAPE, which 305 
indicates the regression model accuracy (accuracy=100% − MAPE), is the top choice. RMSE 
and R-square are also selected for evaluating the accuracy of the estimate.  
 
4.3 Data preparation 

Prior to ML regression model training and validation, it is necessary to conduct data 310 
normalization and division. Data normalization, which means scaling data to a defined interval 
(Luor, 2015), is needed due to the big magnitude order difference of different feature data. For 
example, the GFA ranges from 219.77 to 41,077.04 (unit: m2) whereas the total floor number 
only ranges from 1 to 26 (unit: floor). The range difference has negative impacts on the 
performance of regression models that leverage the relative weight of features (Gal & 315 
Rubinfeld, 2019). Among the multiple applicable data normalization methods, this study used 
𝑧𝑧-score scaling to normalize feature data. 𝑧𝑧-score scaling transforms a data sample into a new 
set with a mean value of 0 and a standard deviation of 1, by using Equation (1): 
 

z-score value= 𝑋𝑋𝑖𝑖−𝜇𝜇
𝜎𝜎

 (1) 

 320 
where 𝑋𝑋𝑖𝑖 is an observation value of a feature. 𝜇𝜇 and 𝜎𝜎 are the mean and standard deviation of 
all observation values of the feature, respectively. 
 
Data division aims to split all sample data into two datasets, one for model training and the 
other for model validation. When the collected data sample is big enough, the popular method 325 
is to randomly split 70~80% of the sample for model training, while using the rest 20~30% for 
model validation. When sample data is not abundant, like in this case, k-fold cross-validation 
is recommended. Cross-validation is a resampling technique that uses different portions of the 
data to train and test a model on different iterations (Browne, 2000). However, for a small 
training data sample, the probability of model overfitting would be high (Karystinos & Pados, 330 
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2000). Overfitting means a model performs well on the small data sample in model training 
but badly in predicting based on new, unseen input data (Mohri et al., 2018). Under this 
circumstance, a recommended solution is to synthesize the new data based on the original data 
to expand the training dataset for model training (Karystinos & Pados, 2000; Ying, 2019). Data 
synthesis is akin to transferring the training data insufficiency problem to the classical data 335 
imbalance problem, and then solving it using oversampling techniques (Sharma et al., 2021). 
 
With 33 determined building features, the data size of the 71 buildings is actually rather small. 
This study thus used the data synthesis technique to prepare datasets for model training and 
validation. Following the comparative analysis conducted by Aborujilah et al. (2020), this 340 
study chose the Bootstrap algorithm to synthesize new data. The specific data preparation 
process is as follows: 

1) Shuffling the 71 samples and randomly extracting 50 of them as model training data 
and the remaining 21 for model testing; 

2) Based on the training sample of 50 buildings, using the Bootstrap algorithm to 345 
synthesize new data until the sample is expanded to 1000; 

3) Training an ML regression model based on the 1000 samples; 
4) Testing the trained model by using the remained 21 samples and recording model 

performance; and 
5) Repeating steps 1–4 ten times and then calculating the average model performance. 350 

This is equivalent to 10-fold cross-validation. 
 
4.4 Model training and validation 
Based on the Embedded feature selection method, we first conducted experiments to find out 
the best feature combination for every determined ML regression algorithm. The experiments 355 
were implemented in the MATLAB platform. Specifically, we used the F-test to calculate the 
importance score of each feature and ranked them based on the score (MathWorks, 2022) (See 
Figure 5(a)). Round by round, the feature with the lowest importance score was removed while 
the rest features were used as the model input. With 33 building features and six types of 
regression algorithms, 198 rounds of experiments were conducted to obtain the best 360 
combination of building features for each type of regression algorithm.  
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Figure 5. (a) Feature importance score ranking by using the F-test algorithm; (b) The change 
of MAPE when inputting different feature subsets and using different ML regression 365 
algorithms (MLR: multiple linear regression, SVMR: support vector machine regression, TR: 
tree regression, GPR: Gaussian process regression, TRE: tree regression ensemble, RNN: 
regression neural network; underlying data for Figure 5a&b are respectively available in Table 
S2&S3 of Supporting Information S2) 
 370 
The feature selection experiment results are shown in Figure 5(b), which presents how the 
MAPE changes in line with the number of selected features. The feature number that 
corresponds to the lowest MAPE represents the optimal result. As shown in filled dots in Figure 
5(b), the optimal building feature numbers are 19 for multiple linear regression algorithm, 18 
for support vector machine regression algorithm, 16 for tree regression algorithm, 10 for 375 
Gaussian process regression algorithm, 7 for tree regression ensemble algorithm, and 5 for 
regression neural network algorithm. In addition, under a certain optimal feature number, the 
specific features, which constitute the best feature combination, were identified and then 
extracted from the full feature set (see Table 2) for further experiments. 
 380 
Based on the best feature combination of each regression algorithm, we conducted experiments 
to explore the regression model that has the best performance in estimating material stocks. Six 
different models were trained and tested. Table 3 summarizes the experimental results. When 
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measured by MAPE, the multiple linear regression model is the best because of showing the 
smallest MAPE (9.1%). This value means the model estimation accuracy reaches 90.9%. 385 
Meanwhile, the regression tree model is also acceptable, with a MAPE of 27.5% which is 
equivalent to an accuracy of 72.5%. If only considering RMSE, the regression tree ensemble 
model performs better than the multiple linear models. However, both of them are excellent. 
When focusing on the R-square metric, both the multiple linear regression model and the 
regression tree ensemble model perform well, respectively being 0.93 and 0.78. In this study, 390 
the best model is determined by considering the MAPE, RMSE, and R-square together. 
Therefore, the trained multiple linear regression model with 19 building features is 
recommended for estimating BMS.  
 
Table 3. The performance of models using different ML regression algorithms 395 

Regression model algorithm Model’s MAPE Model’s RMSE Model’s R-square 
Multiple linear regression 9.1% 474.13 0.93 
Support vector machine regression 48.1% 1325.70 0.21 
Regression tree 27.5% 1,050.50 0.46 
Gaussian process regression 44.8% 1,904.41 0.28 
Regression tree ensemble 34.2% 448.25 0.78 
Regression neural network 32.3% 1,302.44 0.33 

 
Referring to existing regression prediction studies, a consensus is that both MAPE<10% and 
R-square>0.9 represent a good model performance. Thus, the multiple linear regression model 
developed by using the data of the 71 buildings is sufficient for BMS estimation. Besides, 
unlike traditional statistical regression models, the trained multiple linear regression model is 400 
an ML model that consists of 121 function terms. It is therefore difficult to express it in 
mathematical forms or interpret it by a human. We can treat the model as a ‘black box’ 
considering the primary concern is its estimation performance. Equation (2) outlines the ML 
regression model: 
 405 
𝑀𝑀𝑀𝑀�  = ℱ(Htotal, GFAtotal, GVtotal, P/FAblock, FNtotal, Ybuilt, FAblock, Pblock, FNblock, UT,  
                 P/FAmean, FCAblock, FHblock, FHmean, H/FAblock, H/FAmean, GVblock, E/GVblock,  
                  E/GVmean) 

(2) 

 
where 𝑀𝑀𝑀𝑀�  refers to the estimated material stock of buildings, and the building features are 
defined in Table 2.  
 
4.5 Model application 410 
When applying the model to estimate the BMS, one needs to firstly collect six types of building 
features, including building type, building year, height, perimeter, floor area, and total floor 
number. Generally, benefiting from various urban digitalization initiatives, acquiring these data 
is no longer difficult. Building height, floor area, perimeter, and total floor number can be 
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obtained from Google Maps, Google Earth, and other available map databases like the iB1000 415 
used in this research. The building type can be derived from land-use databases issued by the 
Land Department. The building year can be gathered by browsing the website of real estate 
agencies, calculating the average age of surrounding buildings (Aksözen et al., 2017), or 
making inferences based on some features (Biljecki & Sindram, 2017).  
 420 
With the six types of data and the formulas shown in Table 2, the value of the 19 input variables 
can be smoothly derived and then combined into a matrix, which will be further normalized by 
using the z-score algorithm (see Equation [1] above). The input variable sequence in the matrix 
refers to Equation (2). The MATLAB code for calling the model is EMS = 
predict(MSmodel_multipleLinearRegression, matrix). Here EMS is ‘estimated material stock’. 425 
It represents the output of material stock estimation by weight. Predict is a common MATLAB 
program language for calling trained models, and MSmodel_multipleLinearRegression is the 
name of the multiple linear regression model developed by this research. We have encoded and 
shared the BMS quantification model through a GitHub link (Yuan et al., 2022).  
 430 
5. Discussion 
The key to UMS quantification, whether bottom-up or top-down, lies in the accurate estimation 
of material stocks at the individual building or infrastructure level. The biggest challenge faced 
by current studies of this kind is the lack of ground-truth data to verify their results, as the data 
are only available if the building is demolished and its embodied materials are properly 435 
measured. Benefiting from a valuable dataset related to 71 demolished buildings in Hong Kong, 
this research developed a BMS estimation model by using simple and easy-to-obtain building 
features. 
 
This research makes two contributions. Firstly, it contributes a novel approach to UMS 440 
quantification by dealing with it at the building level. With reliable BMS being quantified, it is 
possible to scale up the estimate to neighbourhood, city, region, and even national scales for 
applications such as modelling urban metabolism, urban mining, and national resource 
planning. However, information on overall material stocks is also desired in multiple 
application scenarios such as stock-enabled socio-economic metabolism analysis (Fishman et 445 
al., 2015; Guo et al., 2019), spatiotemporal stock dynamic analysis (Marcellus‐Zamora et al., 
2016; Mastrucci et al., 2017; Mollaei et al., 2021), and so on. The approach is also able to 
support microscopic material stock management, e.g., proper deconstruction for cross-project 
waste material sharing or cross-jurisdiction construction waste material trading. Secondly, the 
research makes a methodological contribution to the UMS quantification domain. Unlike 450 
previous top-down and bottom-up approaches, this research successfully demonstrated that 
BMS can be accurately estimated by using six easy-to-obtain building features and ML 
regression algorithms. This provides a novel UMS quantification perspective and, more 
importantly, contributes a methodology that can be used in other regions.  
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 455 
This study is not free from shortcomings. Firstly, it might be difficult for other interested 
researchers to obtain similar ground truth data in other cities. Nevertheless, this difficulty is 
increasingly relieved. More and more cities have started to implement construction waste 
disposal levy schemes. These schemes may help capture and record various data in a central 
place. The demolition data like Hong Kong’s may just stay with these related government 460 
departments without being harnessed. Our research is thus inspiring for researchers to tap into 
these data sets as “buried assets”. Moreover, demolition data sets can also be obtained from 
demolition companies. We noticed this from previous studies, such as Kleemann et al. (2016) 
and Sprecher et al. (2021). Secondly, this study does not measure the detailed material 
composition of the BMS. This is attributable to the fact that the demolition data recorded inert 465 
and non-inert portions only. Notably, several leading construction companies in town have 
started to delve into the detailed compositions for internal material management. There are also 
research teams trying to use computer vision or other machine learning means to obtain the 
detailed waste compositions (Chen et al., 2021; Dong et al., 2022). Furthermore, with the 
accurate overall stock estimate, the specific material stock can also be derived through the 470 
following steps: 1) grouping the overall stock according to building cohort classifications, 2) 
obtaining the typical material composition of each building cohort, and 3) multiplying each 
group of stocks by corresponding typical material composition to obtain stock by material 
categories. Lastly, the research did not cover urban infrastructure as another component of 
UMS. Future studies can expand to this important sector.  475 

 
6. Conclusion 
Previous studies have successfully introduced many urban material stock (UMS) quantification 
approaches. However, their common crux is to have a relatively accurate estimate of a building 
material stock (BMS). One cannot ascertain whether his/her estimate of a BMS is accurate 480 
before the building is demolished and its embodied materials are separated and weighed. This 
research aimed to develop a BMS quantification model based on some easy-to-obtain building 
features without necessarily demolishing and weighing the building. Using 71 demolished 
buildings in Hong Kong as a valuable sample and machine learning regression techniques, we 
discovered that six building features, namely (1) building type, (2) building year, (3) height, 485 
(4) perimeter, (5) total floor area, and (6) total floor number can satisfactorily predict the BMS 
of individual buildings. A trained multiple linear regression model has a performance of mean 
absolute percentage error (MAPE) of 9.1%, root-mean-square error (RMSE) of 474.13, and R-
square of 0.93. By summing up the BMS, a reasonably accurate UMS estimate can be derived.  
 490 
This research provides an innovative solution to UMS quantification, BMS in particular, by 
using several simple and visible building features. The research is data-driven and rigorous. 
However, the data-driven approach is like a ‘black box’ that is not readily accessible to us. 
Future research is recommended to verify the model in other urban areas when data is available. 
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Efforts should also be paid to make the BMS quantification model explainable to humans. In 495 
addition, it would provide more valuable decision-making information if the BMS covers 
detailed material compositions. Finally, similar research can be expanded to quantify IMS so 
as to derive a complete UMS. Further studies are encouraged to cover these limitations in the 
future.  
 500 
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Supporting information 

Supporting information can be found in the online version of the article at the publisher’s 730 
website. 
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