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Abstract 
Assessing and managing the thermal environment within urban streetscapes is of paramount 
importance for the health, livability, and ecological sustainability of metropolitan regions. 
However, due to a scarcity of high-precision historical street thermal environment data for 
prediction and modeling, existing urban thermal environment classification assessment studies 15 
suffer from low resolution (> 30m) or limited research scope (e.g., community-level), resulting 
in less accurate and comprehensive insights. This study introduces an innovative framework 
for constructing large-scale urban street-level thermal gradients using classified samples 
derived from the spatial structural features of street points. The core of this framework lies in 
the k-means unsupervised classification algorithm. This approach integrates detailed local 20 
geographic information system (GIS) data with street view features, calculated through 
semantic segmentation of Google Street-View-Panorama using the DeepLabV3 model. This 
allows for the categorization of a vast array of high-precision street points based on spatial 
structural similarity, a key factor influencing the similarity of street thermal environment 
features. By selecting appropriate samples for on-site thermal environment measurements 25 
within each category and subsequently extrapolating this knowledge to the thermal 
environment classification of each category, this framework facilitates the rapid creation of 
high-precision street-level thermal gradient models across extensive urban areas. 

Keywords: Street view panoramas; Geographic information system, Semantic segmentation; 
K-means; Thermal gradient 30 

1. Introduction 

Urban spatial structure is an abstract or generalized description of phenomena within 
geographical spaces, encompassing aspects such as the distribution of elements, their 
proportions, and relative positions [1]. These spatial geometric concepts play a crucial role in 
understanding and interpreting the mechanisms underlying urban environments, transportation, 35 
and socio-economic developments [2, 3]. However, with the acceleration of urbanization and 
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the expansion of urban scale, the complexity of the urban spatial structure is constantly growing, 
making the collection, analysis, and interpretation of urban data increasingly challenging [4]. 

In the past few decades, the incorporation of geographic information systems (GIS) into urban 
spatial analysis has significantly advanced research endeavors. GIS facilitates the visualization, 40 
analysis, and interpretation of urban space by integrating various types of data [5]. For instance, 
remote sensing data obtained via satellites and airborne sensors are presented in the form of 
regular pixel arrays (i.e., raster), with each pixel representing a specific geographical area and 
containing attribute information about that region, can be utilized for monitoring environmental 
changes, urban development, land use, and so on [6, 7]. Numerous research methodologies 45 
have emerged around these data, including place syntax and spacematrix [8, 9]. By extracting 
shape, size, and location data of urban elements (e.g., street greenery, street networks, 
transportation nodes, and public facilities), indices such as building density, public space ratio, 
and mixed-use distribution are calculated, revealing detailed urban characteristics 
encompassing sustainability, livability, and vibrancy [10]. Although GIS possesses notable 50 
advantages and value in addressing large-scale urban research issues, limitations in data 
perspective and format may impact its ability to discern nuances in urban environments. 
Specifically, the top-down viewpoint and raster data format imply a limited level of detail in 
the geographic space, potentially leading to inaccuracies and errors when analyzing urban 
spatial structures and morphology [11]. 55 

With the proliferation of mobile devices, the widespread application of wireless 
communication technology, and the development of services such as Google Street View, street 
view data volume has been increasing continuously [12]. Meanwhile, virtual audits have 
gradually emerged, progressively replacing traditional on-site inspections. By leveraging 
advanced data analysis technologies, such as machine learning and computer vision, it is 60 
possible to automatically extract from street view imagery (SVI) datasets detailed urban spatial 
structure features unattainable from satellite images and other frequently used data sources [13]. 
Furthermore, SVI offers a visual experience that originates from the human perspective, which 
plays a pivotal role in evaluating research questions involving psychological perception such 
as the urban thermal environment [14]. 65 

Although significant progress has been made in recent years in urban spatial analysis using 
SVI, there remain two main limitations that urgently need to be addressed. Firstly, in extracting 
street view features from SVI, numerous studies primarily focus on the most intuitive 
perceptual experiences in urban spaces, such as the sky view factor (SVF), tree view factor 
(TVF), and building view factor (BVF), while neglecting the potential effects generated by 70 
other diverse urban characteristics (e.g., urban functions, building materials) and surrounding 
geographical conditions. In cities with complex functional zoning and geographical 
environments, such as Hong Kong, these features may vary significantly from street to street. 
Such an approach is incapable of holistically assessing the genuine characteristics of urban 
spaces, potentially resulting in biases in the actual analysis. Secondly, current SVI research 75 
typically concentrates on urban features that are easily quantifiable or have complete historical 
data, such as a city's GDP, population growth, traffic flow, and household poverty levels. 
However, for more complex or subjective urban features, such as the distribution of thermal 
gradient in cities, the lack of street-level high-resolution historical thermal data and unified 
evaluation criteria makes the extraction of urban spatial thermal environmental characteristics 80 
based on SVI challenging. 

This study aims to develop a comprehensive urban street thermal gradient classification 
framework that integrates GIS and street feature data calculated from DeepLabV3 semantic 
segmentation model, complementing the strengths of both to provide a high-precision solution 
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for urban thermal environment classification. These data are used as inputs to the k-means 85 
unsupervised classification model. Appropriate samples are selected from each classified 
category, and their on-site thermal environment data are collected to establish the thermal 
gradient for each category of street space. This framework addresses the difficulty and 
inaccuracy of urban street thermal gradient classification where the labeled data is unavailable 
or scarce. In addition, the study conducts a detailed statistical analysis of the individual data 90 
for each category, aiming to provide comprehensive and detailed guidance and reference 
information for different populations in seeking, planning, and constructing cool spaces in 
urban environments. 

The remainder of this paper is organized as follows: Section 2 offers a concise review of prior 
research on urban spatial feature auditing, with emphasis on urban thermal environment. 95 
Section 3 elaborates each sub-stage within the proposed methodology. Section 4 outlines the 
datasets used for experimentation, and Section 5 reports the research results and findings. 
Section 6 discusses the implications and limitations of the study, while Section 7 presents the 
conclusion, summarizing the main insights. 

 2. Related works 100 

2.1 GIS-based urban thermal pattern modeling 

GIS-based urban thermal pattern mapping encompasses two primary research streams. Thermal 
infrared (TIR) remote sensing techniques are employed to directly retrieve land surface 
temperature (LST) [15]. LST plays a pivotal role in regulating the temperature of the lower 
layer urban atmosphere, as it determines the radiation and energy exchange at surface level, 105 
the internal climate of buildings, and the comfort level of urban dwellers [16]. Consequently, 
comparative analyses of the relationships between LST and other urban features can further 
reveal intricacies and diversity within the urban thermal environment [17]. Roth, et al. [18] 
pioneered exploration of the potential of TIR technology for detecting land surface radiant 
temperature in three coastal cities and explored its relationship with land use. The field has 110 
since garnered widespread attention and continuous refinement and improvement in related 
method (e.g., emissivity correction). Lo, et al. [19] matched LST with the complexity of urban 
environment factors such as land use and land cover (LULC) and normalized difference 
vegetation index (NDVI) to spatially model the urban heat island effect. Weng, et al. [20] 
discussed the relationship between LST and vegetation abundance in the urban heat island 115 
context. In addition to LULC and NDVI, Huanchun, et al. [21] investigated the correlations 
between LST and several other factors, including modified normalized water index, point of 
interest density, green space and plot ratio, as well as building and road density. 

Unlike the direct acquisition of LST, prediction-based methods build on conclusions of data 
correlation derived from previous studies, indirectly estimating urban thermal patterns through 120 
related GIS data. This typically involves establishing models such as regression models, 
machine learning models, and so on. For example, Iino and Hoyano [22] utilized weather 
parameters (e.g., air temperature, relative humidity, solar radiation, wind velocity) along with 
GIS data (e.g., base map of urban planning, traffic information, vegetation map) to numerically 
simulate surface temperature distributions through a heat balance algorithm. Equere, et al. [23] 125 
integrated terrain factors and other morphological parameters to develop an artificial neural 
network (ANN) model to predict LST. In addition, some studies predict future changes in urban 
thermal patterns based on historical data. Maduako, et al. [24] did so based on 28 years of LST 
data, with a 7-year interval. Kafy, et al. [25] integrated LST, LULC, normalized difference 
built-up index, and normalized difference bare soil index data from 1999, 2009, and 2019 as 130 
inputs for an ANN model to predict the urban thermal field variance index for 2029 and 2039.  
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2.2 SVI for urban thermal feature auditing 

While LST has been used as the most common assessment metric for modelling urban thermal 
pattern in the recent literature, the limited ability of top-view raster GIS data to capture details 
of urban spatial features makes it potentially unrepresentative of the level of warming at the 135 
street level [26]. Therefore, recent studies have extensively employed computer vision 
techniques to retrieve three-dimensional object information from two-dimensional SVI and 
establish a comprehensive understanding of this imagery. Thermal environment modeling is 
an important research branch in this field, with numerous studies utilizing various street view 
features, among which SVF is one of the most critical as it directly affects the canyon’s radiant 140 
temperature and indirectly impacts its air temperature [27]. For example, Bourbia and 
Boucheriba [28] and Johansson [29] sketched urban heat islands and thermal comfort based on 
SVF and height to width (H/W) ratios derived from fisheye images. Carrasco-Hernandez, et al. 
[30] used fisheye images constructed from GSV to calculate SVF and estimated short-wave 
global irradiance using the Rayman model. Richards and Edwards [31] analyzed the proportion 145 
of green canopy cover using GSV and estimated the shading effect of trees on the annual 
radiation reaching the ground.  

However, only a limited number of studies have considered the impact of both GIS and street 
view features on urban thermal patterns. For instance, Andrew, et al. [32] employed road, 
terrain, vegetation, and building attributes along with SVF to model road surface temperatures. 150 
Wei, et al. [33] integrated LULC, SVF, TVF, and BVF features and predicted LST using 
multiple linear regression and various machine learning models. All of these publications have, 
to varying extents, neglected certain GIS and street view features, and are limited in terms of 
the study area size and time available for data collection. This reveals existing research gaps 
while simultaneously offering insightful references for the evaluation of street thermal gradient. 155 

3. Research methodology 

The overall structure of the proposed framework is presented in Fig. 1. The coordinates of 
Google Street-View-Panorama (GSVP) acquisition points are first determined using urban road 
network data. GSVPs are generated by synthesizing street view perspectives from four 
directions at each coordinate point (phase 1: data collection and processing). Subsequently, for 160 
each coordinate point, the GIS data (i.e., LULC, elevation, and slope) are extracted from remote 
sensing data and digital elevation model using ArcMap software. The GSVPs are fed into a 
well-trained semantic segmentation model, the output of which is employed for extracting SVF, 
TVF, and BVF (phase 2: feature extraction and calculation). The collected GIS and street view 
feature data for each coordinate point will serve as input for an unsupervised classification 165 
model to facilitate data classification and subsequent analysis (phase 3: clustering analysis). 
The on-site measurement data of samples from each category will set the thermal levels of the 
respective categories (phase 4). The details of each sub-step are introduced as follows. 
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Fig. 1 The proposed framework for street thermal gradient classification 170 

3.1 Data collection and processing  

The vector data of the road network in the study area is obtained from OpenStreetMap, an 
open-source global geographic information repository featuring a data structure using basic 
elements such as nodes, ways, and relations. Subsequently, the downloaded road data is 
imported into the ArcMap software for data filtering and editing. Roads where people are less 175 
likely to remain for extended periods according to attributes such as steps, tunnels, bridges and 
those under construction are excluded. Data collection points are generated every 50 meters 
along the remaining roads, assigned a unique ID, and their geographical coordinates (longitude 
and latitude) are recorded. This information serves as the basis for obtaining panoramic images 
from the GSV service.  180 

In order to achieve bulk acquisition and management of GSVPs, the unique IDs of each 
previously acquired data collection point are traversed, and based on their corresponding 
geographical coordinates, street view images at four angles (0°, 90°, 180°, 270°) are fetched 
from the GSV service. These images are then stitched together to form a panoramic image. In 
this step, distortion correction, image alignment, and smoothing of transition areas is applied 185 
to the street view images, which are projected onto the spherical coordinate system to eliminate 
distortions caused by perspective projection. Next, the overlapping areas between adjacent 
images are automatically detected and matched to achieve precise image alignment. To further 
improve the stitching effect, transition areas are smoothed at different scales, ensuring that the 
final generated GSVPs possess high quality and reliability.  190 

3.2 Feature extraction and calculation  
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3.2.1 GIS feature extraction 

LULC data within the GIS parameters is derived from remote sensing data, specifically from 
Landsat 8/9 OLI/TIRS C2 L1 (operational land imager/thermal infrared sensor collection 2 
level 1) [34]. L1 remote sensing data encompasses the fundamental tier of spectral information. 195 
Through the data collected by multispectral and hyperspectral sensors, the spectral reflectance 
characteristics of various surface materials and ecosystems (i.e., LULC) across different bands 
can be captured, identified, and differentiated. To improve the sensitivity and accuracy of the 
data, several common metadata filters are employed, with cloud cover percentage, for instance, 
restricted between 0% and 10%. 200 

The obtained multi-band raster datasets are imported into ArcMap software and processed by 
creating a composite band file. Subsequently, a supervised classification approach is employed 
for the LULC analysis. This procedure encompasses two critical steps. The first is training 
sample generation. To ensure accuracy of the classification results, a minimum of 10 training 
samples are created for each LULC type. The creation of these samples is based on the training 205 
sample manager function within the ArcMap image classification tools. Each LULC type is 
assigned a unique name (e.g., urban, bare surface, vegetation, water) and corresponding value 
(e.g., 1, 2, 3, 4) for identification during the subsequent classification process. The second step 
is conducting supervised classification using the interactive supervised classification function 
for classification. Input parameters include the composite band file and the training sample 210 
management file. Ultimately, a classified raster dataset comprising four land-use types is 
generated.  

Elevation data within the GIS parameters is directly obtained from the digital elevation model, 
which originates from the advanced spaceborne thermal emission and reflection radiometer 
(ASTER) global digital elevation model (DEM) dataset [35]. Based on the acquired elevation 215 
data, slope information for the study area is extracted using the slope function in the ArcMap 
spatial analyst tools. This process involves calculating spatial derivatives on the DEM data to 
obtain slope values for each grid cell.  

Upon acquiring the three GIS parameters for the study area, corresponding values are extracted 
using the ArcMap extract multi values to points tool according to the collection point 220 
coordinates in section 3.1. Ultimately, these GIS values, along with geographical coordinates, 
are stored in a CSV file, facilitating their retrieval during the subsequent creation of an 
unsupervised classification task dataset.  

3.2.2 Street view feature calculation  

Street view features are derived from semantically segmented GSVPs, which are obtained from 225 
the DeepLabV3 model [36]. At the core of the DeepLabV3’s architecture lies ResNet50 [37], 
a 50-layer deep residual network that incorporates residual modules to alleviate the vanishing 
gradient issue, thereby facilitating the network's ability to delve deeper into learning image 
features (Fig. 2). Within ResNet50, residual modules serve as the fundamental building blocks, 
permeating the entire network structure. Each residual block consists of multiple convolutional 230 
layers, and by incorporating an identity mapping following the convolutional operation, the 
input feature map is combined with the convolutional result through element-wise addition, 
subsequently generating the output feature map. 
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Fig. 2 (a) DeepLabV3 structure for semantic segmentation of GSVPs; (b) ResNet50 235 

backbone structure to extract hierarchical features of GSVPs 
The output feature map from ResNet50 is fed into the atrous spatial pyramid pooling (ASPP) 
module (Fig. 3), which is a sophisticated method for multi-scale context information fusion. 
ASPP employs dilated convolutions with varying dilation rates to capture feature information 
at different scales while preserving the resolution of the feature map. The outputs of the five 240 
sub-modules in ASPP are concatenated along the channel dimension, forming a richer feature 
representation. Subsequently, a 1x1 convolutional layer is employed to fuse these features, 
resulting in the final ASPP output. 
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Fig. 3 ASPP structure to capture multi-scale contextual information 245 

In the latter architecture of the DeepLabV3 model, a 3x3 convolutional layer is employed 
initially to attain a smoother and more continuous feature representation while retaining multi-
scale features. Subsequently, a 1x1 convolutional layer is utilized to reduce the dimensionality 
of the feature map, thereby decreasing the computational burden and the number of model 
parameters, which in turn enhances computational efficiency. Ultimately, a bilinear 250 
interpolation up-sampling operation is adopted to restore the low-resolution feature map to the 
original image resolution, facilitating the extraction of street view features. 

In this study, the open source Cityscapes Dataset is employed to train the DeepLabV3 model 
[38], which encompasses high-quality annotated urban street view images captured under 
various weather conditions and illumination levels across multiple cities. This enables the 255 
DeepLabV3 model to learn and generalize effectively across different scenarios. The 34 
original label classes within the Cityscapes dataset are remapped to 20 distinct training label 
classes, which may exhibit considerable disparities in pixel count across images. For example, 
classes such as road and building may predominantly occupy the pixels within an image, 
whereas classes like pedestrian and bicycle may account for only a minor portion. 260 
Consequently, during the training process, the model may exhibit a proclivity for prioritizing 
classes with a higher pixel count, neglecting those with a lower count. This tendency could 
lead to suboptimal performance in less frequently occurring classes. To address this issue, it is 
necessary to balance the contributions of each class within the loss function by incorporating 
weights for each class. This involves assigning greater weights to classes with fewer pixels, 265 
thus ensuring increased attention during the training process and ultimately enhancing overall 
performance. Specifically, it is essential to quantify the pixel count of each class within the 
training set and subsequently calculate the respective weights [39]: 

𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
1

ln(1.02 + 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) (1) 
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in which 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 represents the weight of a specific class, and 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 denotes the proportion of 270 
the pixel count of a certain class relative to the total pixel count. In the training process, the 
DeepLabV3 model utilizes a weighted cross-entropy loss as the model’s loss function. The loss 
function measures the difference between the predicted segmentation map and the true labels, 
guiding the model to minimize this difference by adjusting its weights during training. The 
entire procedure takes 1000 epochs, with a batch size of eight and an initial learning rate set to 275 
1×10−4. 

Upon completing the training process of the DeepLabV3 model, the appropriate epoch training 
weights are utilized for precise semantic segmentation of the collected GSVPs, ensuring the 
optimal performance of the model while avoiding overfitting and underfitting. Subsequently, 
the segmented GSVPs undergo a hemispherical projection transformation, as it can capture the 280 
scenes in all directions from the observer's position, providing a more accurate environmental 
representation. As a result, the calculated view factors for the sky, tree, and buildings will more 
accurately reflect the coverage range of each category within the environment. These SVFs are 
saved in a CSV file to facilitate the next step of unsupervised classification. 

3.3 Clustering analysis  285 

The k-means algorithm is employed to categorize the features of each collection point stored 
in the CSV file. Each feature vector consists of eight dimensions, encompassing five GIS data 
points and three street view factors. Prior to executing the k-means classification, it is 
imperative to conduct absolute normalization on each feature vector to eliminate discrepancies 
in the data dimensions, thereby ensuring that the influence of each dimension on the 290 
classification outcome is equitably weighted and ultimately enhancing the classification 
accuracy. 

K-means is an unsupervised learning algorithm employed for data clustering. Its fundamental 
concept involves partitioning the dataset into 𝐾𝐾 categories, with each category represented by 
a centroid [40]. The objective of the algorithm is to minimize the sum of distances between 295 
each data point and the centroid of its corresponding category. Compared to other clustering 
algorithms, such as hierarchical clustering, which tends to be computationally expensive for 
large datasets, and density-based spatial clustering of applications with noise (DBSCAN), 
which suffers from sensitivity to noise and difficulties in defining optimal parameters, k-means 
has been proven to have low computational complexity, rapid convergence, and effective 300 
performance on large-scale datasets. However, it is sensitive to the selection of initial centroids, 
which may lead to local optima. Therefore, to determine the optimal 𝐾𝐾 value, both the elbow 
method and silhouette coefficient are utilized [41].  

The elbow method identifies the optimal 𝐾𝐾 value by examining the changes in the sum of 
squared errors (SSE) corresponding to different 𝐾𝐾  values [42]. As 𝐾𝐾  increases, the SSE 305 
gradually decreases, but when 𝐾𝐾 reaches a certain point, the decline in SSE significantly slows 
down. This point, referred to as the elbow, corresponds to the optimal 𝐾𝐾 value. However, in 
some cases, the inflection point may not be apparent. To compensate for the potential 
limitations of using a single method, the silhouette coefficient [43], which considers both 
cohesion and separation in clustering, is also employed to find the optimal 𝐾𝐾  value. The 310 
silhouette coefficient ranges between -1 and 1, with larger values indicating better clustering 
performance. By comparing the results of these two methods, a more balanced and rational 
optimal 𝐾𝐾 value can be determined. 

Upon determining the optimal 𝐾𝐾 value, a statistical analysis of the k-means classification 
results is conducted. This includes the number of instances in each category and the mean 315 
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values of each dimension in the corresponding feature vectors, facilitating a more intuitive 
observation of the data differences between categories. 

3.4 On-site thermal environmental data collection 

To evaluate the thermal comfort associated with the 𝐾𝐾 distinct categories derived from the 
previous step, 10 representative sampling locations are randomly selected from each category. 320 
These locations will undergo in situ measurements of air temperature 𝑇𝑇 (unit: F) and relative 
humidity 𝑅𝑅𝑅𝑅 (unit: percentage). 

Data collection is carried out using a Kestrel 4000 Weather and Environmental Meter, a state-
of-the-art, portable instrument designed for precise measurements of meteorological variables. 
Measurements are taken every 15 minutes between 12:00 PM and 2:00 PM, a period when 325 
ambient temperatures typically reach their daily peaks. The average of these readings is 
calculated to ensure data accuracy. This time frame is chosen to better understand the potential 
heat stress faced by individuals during the hottest part of the day. The data collection process 
spans one month, with the exclusion of days when data acquisition is rendered infeasible due 
to adverse weather conditions, such as rainfall. However, due to uncontrollable factors such as 330 
varying levels of human activity, some uncertainty in the measurement data may still persist. 

Upon completion of the data collection, the average heat index for each of the 𝐾𝐾 categories is 
calculated using equation 2. By focusing primarily on the impact of air temperature and 
humidity on human perception, the heat index has been demonstrated to be a practical and 
straightforward approach to assessing the level of thermal comfort experienced by individuals 335 
in areas characterized by a predominantly hot and humid climate [44, 45]. Subsequently, a heat 
map representing the thermal gradient of the study area is generated, based on the average heat 
index corresponding to each category. 

𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖 =  −42.379 +  2.04901523𝑇𝑇 +  10.14333127𝑅𝑅𝑅𝑅 −  0.22475541𝑇𝑇𝑅𝑅𝑅𝑅 − 
0.00683783𝑇𝑇2  −  0.05481717𝑅𝑅𝑅𝑅2  +  0.00122874𝑇𝑇2𝑅𝑅𝑅𝑅 + 

0.00085282𝑇𝑇𝑅𝑅𝑅𝑅2  −  0.00000199𝑇𝑇2𝑅𝑅𝑅𝑅2 (2)
 

4. Study area and datasets 340 

This study concentrates on the Central and Western District and Wan Chai District in Hong 
Kong, both with their northern sides bordering the sea. This geographical condition subjects 
the local climate to a strong maritime influence, characterized by high humidity and rapid heat 
transfer. In this context, the high-density urban layout leads to particularly pronounced thermal 
discrepancies between streets. The southern sides of these two districts are built along 345 
mountains, resulting in a complex and varied urban structure with considerable variations in 
elevation and slope. To a certain extent, these prominent topographical features also affect the 
distribution and variation of the urban thermal environment. For instance, areas with steeper 
slopes may have less urban heat accumulation due to reduced direct sunlight exposure, while 
areas with higher elevation may be influenced by airflows, forming unique urban thermal 350 
environments. Hence, given the combined influences of a humid and hot climate, high-density 
urban layout, and complex and varied topography, these regions offer substantial reference 
value for examining the distribution of thermal gradient among urban streets. 

Over the past 15 years, a substantial body of research has been dedicated to identifying more 
precise and efficient proxy parameters to achieve improved predictions and assessments of 355 
Hong Kong’s urban thermal environments, ranging from building scale (<100m) to mesoscale 
(<200km) [46-48]. Conducting accurate and efficient thermal environment modeling on micro-
scale (<2 km) samples and subsequently extending this knowledge to a broader context of 
urban street thermal environment classification is pivotal to advancing our understanding of 
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the street thermal gradient distribution in complex urban morphologies under typical climate 360 
conditions. 

5. Data analyses, results, and findings 

5.1 GIS data of collection points 

According to the road network attributes of the study area, roads where people do not remain 
for a long time were removed, and a total of 11,675 GSVPs collection points were generated 365 
based on the remaining road network. To ensure quality of the panoramic images, all collected 
images were screened to exclude those with obvious abnormalities. For example, some roads 
were too narrow, resulting in excessively distorted perspectives in the panoramic images, or 
vehicles obscured the lens. After processing, a total of 8,538 GSVPs were collected. The 
locations of these collection points are shown in Fig. 4(a), distributed throughout the entire 370 
research area. The LULC of the research area consists of four categories: water, vegetation, 
urban, and bare surface, as shown in Fig. 4(b). The elevation and slope data of the whole 
research area are shown in Fig. 4(c) and (d). The elevation in the whole study area ranges from 
0 to 1,245 meters, while the elevation of the collection points varies from 0 to 519 meters. As 
for the slope, it ranges from 0 to 64.43 degrees in the whole study area, and from 0 to 51.32 375 
degrees at the collection points. 

 
Fig 4.  Five collected GIS data (i.e., longitude, latitude, LULC, elevation, and slope) in the 

study area 

5.2 Street view factor of collection points 380 

The DeepLabV3 semantic segmentation model and k-means unsupervised classification model 
are trained using the Pytorch on a Nvidia GeForce RTX 3060 GPU. It took 56.5 hours to train 
DeepLabV3 for 1000 epochs. The training and validation loss of DeepLabV3 are depicted in 
Fig 5. After the 200th epoch, the validation loss surpasses the training loss, and the training 
loss continues to decline, while the validation loss remains stagnant. This indicates that the 385 
model is learning the noise within the training data rather than the underlying patterns, resulting 
in poor generalization capabilities on unseen data. Therefore, the weight parameters obtained 
from training at the 200th epoch are utilized for semantic segmentation of the collected GSVPs. 
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Fig 5.  Training and validation loss in DeepLabV3 training process 390 

The distribution of SVF, TVF, and BVF in the study area, as calculated from 8,538 
semantically segmented GSVPs, is illustrated in Fig. 6. It is evident from the figure that the 
distribution of view factors exhibits geographical patterns. Specifically, coastal regions, owing 
to the limited obstructions and relatively open views, demonstrate better SVF performance. 
Additionally, sporadically distributed areas with higher SVF values can be observed in the 395 
main urban areas and elevated mountainous regions. These areas may benefit from the 
configuration of surrounding buildings and natural topography. Distribution of TVF presents a 
markedly different characteristic. Attributable to the natural advantages of mountainous areas, 
regions with better TVF performance are primarily concentrated in the southern hillside areas 
with considerable terrain undulations and lush vegetation. As for BVF, areas with larger values 400 
are predominantly situated in the central research area, characterized by high building density 
and relatively close distances between edifices. These distribution patterns reveal a certain 
clustering effect of view factors in geographic space, highlighting the crucial supporting and 
guiding role of view factors and geographic data in elucidating urban spatial structure and 
thermal environment classification. 405 

In addition to the distribution characteristics in geographical space, to observe the gradient 
distribution of data more intuitively, the scale set on the color bar represents the view factor 
threshold of every 20% of the data in all 8358 GSVPs, revealing the changing trend and 
concentration area of the view factor values. For the data proportion of the three view factors, 
a notable common feature is that as the value decreases, the proportion of data gradually 410 
increases. This implies that in the studied urban space, these elements usually appear 
independently or in pairs in the majority of GSVPs pixels with a larger proportion. The 
balanced distribution of the three elements in the GSVPs is relatively rare, revealing the 
distinctiveness and extremeness of the urban element proportions. For instance, coastal urban 
areas generally exhibit better SVF performance, but due to poor soil and geological conditions 415 
and visual and landscape considerations, the corresponding TVF value is lower. Conversely, 
mountainous areas with better TVF performance may not be suitable for habitation, resulting 
in a lower corresponding BVF value. On the other hand, areas located in the city center, due to 
high building density, experience a certain degree of view limitation, with the maximum BVF 
reaching 92.95%, and the corresponding SVF and TVF values are smaller. This distinct and 420 
extreme element proportion characteristic exacerbates the clustering phenomenon in urban 
spaces, further corroborating the significant contribution of view factors and geographic data 
in the classification of Hong Kong's thermal environment.  
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Fig 6.  (a) SVF gradient distribution in the study area; (b) TVF gradient distribution in the 425 

study area; (c) BVF gradient distribution in the study area 

5.3 Thermal environment classification of collection points 

The variations in SSE and silhouette coefficient with respect to the number of clusters are 
depicted in Fig 7. In terms of the SSE calculated using the elbow method, although no distinct 
elbow point can be observed, a notable deceleration in the reduction of SSE occurs within the 430 
range of 3 to 5 clusters, suggesting that a relatively suitable 𝐾𝐾 value might exist around these 
cluster numbers. Regarding the silhouette coefficient, two prominent peaks are observed as the 
number of clusters increases, specifically when 𝐾𝐾 = 3 and 𝐾𝐾 = 7, with values ranging from 0.4 
to 0.45. This outcome demonstrates that, at these two cluster numbers, the distances between 
the sample points and other points within the same cluster are comparatively small, while the 435 
distances between different clusters are relatively large, resulting in a superior clustering effect. 
Therefore, after holistically considering the analysis results of the elbow method and silhouette 
coefficient, the optimal 𝐾𝐾 value is determined to be 4. 
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It is worth noting that, although the geographical distribution of SVF, TVF, and BVF in the 
previous step allows for an intuitive division of the data into three clusters, corresponding to 440 
the coastal area, mountainous area, and urban center, these three view factors may not fully 
capture the complexity of spatial distribution, making it still challenging to define the clusters 
of over-urbanized regions. Upon incorporating multiscale and multilevel spatial information 
data, richer contextual information can be provided during the clustering process. By 
synergistically utilizing view factors and GIS data, the internal spatial relationships of the data 445 
are more accurately unveiled, leading to more rational clustering results. 

 
Fig 7.  SSE and silhouette coefficient versus number of clusters 

Upon determining the optimal 𝐾𝐾 value, the average values of the clustering features for the 
8358 GSVPs are presented in Table 1, and the feature distribution is shown in Fig 8. By 450 
examining the average feature values and their distribution in each category, a more detailed 
and comprehensive summary of the spatial characteristics of each cluster can be achieved 
compared to solely relying on the distribution of view factors. In cluster 0, excluding outliers, 
the identification values of LULC features for all the collected points are 1, indicating that this 
cluster consists entirely of urban areas. Taking into account factors such as elevation, slope, 455 
and view factor, it can be observed that the urban spaces represented by cluster 0 are 
characterized by relatively low elevations, gentle slopes, and the smallest average sky and tree 
coverage as well as the largest building coverage among the four clusters. These features 
suggest that cluster 0 embodies typical high-density urban center spaces or under-bridge spaces 
with limited greenery and obstructed sightlines. Hong Kong, as a quintessential high-density 460 
city, has a substantial amount of data for such spaces. Same as in cluster 0, the LULC 
identification values for all points in cluster 1 are also 1, representing urban areas. However, 
in terms of elevation and slope, cluster 1 is lower and more level compared to cluster 0, and 
the data distribution is more concentrated. Simultaneously, cluster 1 exhibits a larger sky 
coverage, indicating that these spaces tend to be located in urban areas with a relatively open 465 
field of vision (e.g., coastal areas, urban park, historic districts). The common characteristics 
of these areas include wide roads, a predominance of mid-rise buildings (4 to 12 stories), and 
ample space allocated for greening. These regions constitute the largest proportion within the 
study area. 

Differing from the first two clusters, cluster 2 encompasses a diverse range of LULC 470 
classifications. The elevation and slope in this category are higher compared to the previous 
two classes, thus including areas with undeveloped or abandoned bare land surfaces. These 
areas are typically located at the urban fringes or the foot and mid-slopes of mountains, with 
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views predominantly consisting of the sky and trees. Cluster 3 exhibits the most distinct 
features, with a noticeable decrease in latitude and longitude compared to the first three clusters, 475 
and the highest elevation and steepest slopes. These spaces are largely mountain trails on the 
southern side of the study area, with minimal human intervention, resulting in a relatively 
smaller number of data collection points. In these regions, the natural environment is relatively 
well-preserved, with views primarily composed of native trees, and buildings being the least 
common sight. 480 

Table 1. Number of collection points and average feature values for each category 

Cluster Count Lng Lat LULC Elevation  Slope SVF TVF BVF 
0 2886 114.16  22.28  1.06 32.14   11.66          4.94           5.05              30.64 
1 3039 114.16   22.28   1.28   17.10    7.41         19.14 10.69 6.27 
2 1924 114.16 22.27 2.05 109.80 17.73        11.07         30.46               4.82 
3 689 114.15  22.26  2.56  346.85   19.96        10.90       43.80              2.22 

 

 
Fig 8. Boxplot of feature distribution for each cluster 

5.4 Thermal gradient of collection points 485 

In Fig 9, one example from 10 selected samples from each cluster for on-site measurements 
and its semantic segmentation results are presented. The data collection period spanned from 
1–31 August, 2023. The heat index values are shown in Table 2, and the data distribution can 
be seen in Fig 10. 

Regarding the average heat index and median line, although cluster 0 possesses the highest 490 
BVF (i.e., building density), its thermal environment is comparatively superior to that of cluster 
1. Potential reasons for this include the extensive architectural shadows generated by high-rise 
buildings and aerial bridges, which obstruct or reflect a substantial amount of solar radiation, 
significantly mitigating the thermal environment of these types of street spaces. Conversely, 
cluster 1, with fewer obstructions, is exposed to direct sunlight for extended periods, resulting 495 
in the poorest thermal environment. Apart from the shading effect, the evapotranspiration of 
trees and their absorption of solar radiation notably enhance the thermal environments of 
clusters 2 and 3. Focusing on the maximum, minimum, and concentration of data, the data 
points in cluster 0 are predominantly situated in the urban center, where urban functions vary 
considerably, leading to a larger fluctuation range in the heat index. In contrast, the data within 500 
cluster 3, characterized by a relatively uniform morphological function, exhibits the most 
focused heat index. 



16 
 

 
Fig 9. Samples and corresponding semantic segmentation results from each cluster 

Table 2. Heat index values (°F) for samples of each category 505 

Cluster Maximum value Average value Minimum value 
0 109.92 97.6 83.44 
1 108.69 99.39 85.84 
2 104.02 96.45 84.08 
3 100.02 91.71 83.03 

 

 
Fig 10. Boxplot of on-site heat index distribution for each cluster  

The thermal gradient distribution of the four categories, as shown in Figure 11, confirms the 
earlier discussion. Data points in cluster 0, with the highest data fluctuations, are dispersed 510 
throughout the urban center, while data points included in cluster 3, with the most concentrated 
value, are predominantly located in the southern mountainous area of the study site. The data 
contained in cluster 1 are mostly located in the seashore and historical area while the data in 
cluster 2 are mostly located in the foothills. Moreover, the inclusion of detailed GIS data and 
the application of the k-means algorithm reveal a more distinct and clearer categorization of 515 
the spatial structure (i.e., thermal environment) within the urban area. Through this approach, 
the previously mixed street points within the over-urbanized area are effectively categorized 
into three separate categories. 
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Fig 11.  Street thermal gradient distribution in the study area 520 

6. Discussion 

6.1 Significance of the GIS-street view feature integration and k-means clustering 
In multi-faceted metropolises, a vast array of urban transitional zones can be observed, such as 
coastal areas leading to high-density city centers and extending to mountainous regions, as well 
as the discrete distribution of older urban districts. These urban spaces exhibit diverse 525 
morphologies and functions, making it challenging to comprehensively depict these street 
spaces using only macro-scale GIS data or micro-scale street view features. This study 
effectively integrates these two types of data to provide a more in-depth understanding of the 
formation mechanisms underlying urban street thermal environments. Compared to existing 
thermal environment classification studies that rely solely on one type of data, this approach 530 
allows for a more comprehensive characterization of urban features. For instance, cluster 1, 
potentially representing coastal cities, can be defined by its higher latitude, lower elevation, 
and larger SVF. This enables a more accurate identification of the factors contributing to its 
poor thermal environment, offering targeted recommendations for future urban planning and 
management. 535 

By employing the k-means clustering algorithm to categorize data with similar characteristics, 
knowledge pertaining to thermal environments can be extracted from the samples within each 
category and subsequently mapped onto the corresponding street categories. This approach 
ensures analytical accuracy while significantly mitigating the extensive time required for on-
site measurements in previous SVI-based urban thermal environment classification studies due 540 
to the lack of historical data. As a result, it alleviates the tension between the low resolution 
associated with large-scale modeling and the extensive time investment required for high-
precision modeling. 

Based on the research findings, several key urban planning and design recommendations have 
been summarized to enhance overall street thermal comfort. Specifically, compared to cluster 545 
2 and cluster 3, which have relatively favorable thermal environments due to large areas of 
vegetation coverage, cluster 1 has the poorest thermal comfort due to direct sunlight exposure, 
making it the most critical area for improvement. The lower BVF and highest SVF indicate 
that this area has substantial open space. Therefore, tree planting to reduce the SVF is an 
effective strategy to improve street thermal comfort in these regions. For cluster 0, although its 550 
average heat index is slightly better than that of cluster 1, the wide fluctuations suggest that 
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certain streets also require urgent improvement. Streets in this cluster feature the highest BVF 
and the lowest TVF and SVF, indicating limited space for tree planting. Consequently, 
improving urban design or reducing building heat dissipation becomes a priority. Examples of 
recommended measures include designing shading structures with high-reflectivity materials 555 
to reduce street heat exposure or optimizing heating, ventilation, and air conditioning (HVAC) 
system operations to minimize heat emissions. 
6.2 Limitations and future works 
This study considers the multi-scale spatial structural features of streets to determine their 
corresponding thermal environment levels. However, previous research has found that different 560 
spatial features have varying degrees of impact on the street thermal environment [49, 50]. For 
example, the degree of street greening and building density have a more significant impact on 
the thermal environment, while the influence of latitude and longitude is relatively smaller. 
Future work could focus on incorporating feature weights to enhance the accuracy and 
reliability of clustering results. One potential approach is to use principal component analysis 565 
(PCA) to reduce dimensionality while preserving key information, thereby identifying and 
prioritizing the most influential features. Alternatively, feature importance scores obtained 
from machine learning models, such as random forest or gradient boosting, could be utilized 
to assign weights to each feature based on their relative impact on the thermal environment. 
These weights could then be integrated into the clustering process, either by modifying the 570 
distance metric in k-means clustering or by adopting weighted clustering algorithms, thereby 
enhancing the interpretability of the results. In addition, future work could explore hybrid 
clustering techniques, such as combining traditional k-means clustering with hierarchical or 
density-based clustering, to further improve the stability and robustness of the classification. 
To ensure the representativeness and reliability of the data, more rigorous on-site measurement 575 
methods, including the use of structured questionnaires or stricter data collection protocols, 
could be implemented to reduce uncertainties in the measurements.  

7. Conclusion 

In this study, a comprehensive framework for high-precision urban street-level thermal 
gradient distribution auditing is proposed. The framework addresses the challenges of low 580 
resolution and inaccuracies due to large research scopes in previous urban thermal environment 
classification studies, as well as the inefficiencies caused by repetitive modelling of thermal 
environments or data collection. The backbone of the proposed framework is the k-means 
unsupervised clustering algorithm for grouping data points with similar structures. The 
algorithm takes the spatial structural features of street points (i.e., coordinate, LULC, elevation, 585 
slope, SVF, TVF, BVF) as input, derived from GIS and the DeepLabV3 model. Given the 
strong interdependence and mutual influence between street spatial structure and thermal 
environment, the thermal environment grade for each category is represented by the on-site 
measured data of representative samples within the category. 

Compared to the rough, subjective classification of street spatial structural features (i.e., 590 
thermal environments) based solely on partial spatial structural features of street points (e.g., 
SVF, TVF, BVF), the comprehensive integration of high-precision GIS data and the k-means 
algorithm demonstrates significant improvement in differentiating performance. This is 
particularly evident in over-urbanized areas with complex and varied morphologies. It is 
recommended that future research incorporates weights for each spatial structural feature of 595 
street points to further enhance the performance of the k-means clustering algorithm and 
achieve higher precision in urban thermal gradient distribution modeling. 

Acknowledgments 



19 
 

The study is supported by a Theme-Based Research Scheme (TRS) grant (Project No.: T22-
504/21-R) and a Collaborative Research Fund (CRF) (Project No.: C7080-22GF), both from 600 
the Hong Kong Research Grant Council (RGC).  
References 
[1]  F.E. Horton, D.R. Reynolds, Effects of Urban Spatial Structure on Individual Behavior, 

Economic Geography 47(1) (1971) 36-48. https://doi.org/10.2307/143224  
[2]  A. Anas, R. Arnott, K.A. Small, Urban Spatial Structure, Journal of Economic Literature 605 

36(3) (1998) 1426-1464.  
[3]  P. Rickwood, G. Glazebrook, G. Searle, Urban Structure and Energy—A Review, Urban 

Policy and Research 26(1) (2008) 57-81. https://doi.org/10.1080/08111140701629886  
[4]  M.M. Rathore, A. Paul, W.-H. Hong, H. Seo, I. Awan, S. Saeed, Exploiting IoT and big data 

analytics: Defining Smart Digital City using real-time urban data, Sustainable Cities and 610 
Society 40 (2018) 600-610. https://doi.org/https://doi.org/10.1016/j.scs.2017.12.022  

[5]  M.F. Goodchild, Geographic information systems, Progress in Human Geography 15(2) 
(1991) 194-200. https://doi.org/10.1177/030913259101500205  

[6]  G.G. Wilkinson, A review of current issues in the integration of GIS and remote sensing data, 
International journal of geographical information systems 10(1) (1996) 85-101. 615 
https://doi.org/10.1080/02693799608902068  

[7]  J.C. Hinton, GIS and remote sensing integration for environmental applications, International 
journal of geographical information systems 10(7) (1996) 877-890. 
https://doi.org/10.1080/02693799608902114  

[8]  B. Hillier, J. Hanson, The social logic of space, Cambridge university press1989. 620 
[9]  A. Ståhle, L. Marcus, A. Karlström, Place Syntax: Geographic accessibility with axial lines in 

GIS, Fifth international space syntax symposium, Techne Press, 2005, pp. 131-144. 
[10]  Y. Ye, A.v.N. Nes, Quantitative tools in urban morphology: combining space syntax, 

spacematrix and mixed-use index in a GIS framework, Urban Morphology 18(2) (2014) 97-
118. https://doi.org/10.51347/jum.v18i2.3997  625 

[11]  M.F. Goodchild, Scale in GIS: An overview, Geomorphology 130(1) (2011) 5-9. 
https://doi.org/https://doi.org/10.1016/j.geomorph.2010.10.004  

[12]  A.G. Rundle, M.D.M. Bader, C.A. Richards, K.M. Neckerman, J.O. Teitler, Using Google 
Street View to Audit Neighborhood Environments, American Journal of Preventive Medicine 
40(1) (2011) 94-100. https://doi.org/https://doi.org/10.1016/j.amepre.2010.09.034  630 

[13]  N. He, G. Li, Urban neighbourhood environment assessment based on street view image 
processing: A review of research trends, Environmental Challenges 4 (2021) 100090. 
https://doi.org/https://doi.org/10.1016/j.envc.2021.100090  

[14]  F. Biljecki, K. Ito, Street view imagery in urban analytics and GIS: A review, Landscape and 
Urban Planning 215 (2021) 104217. 635 
https://doi.org/https://doi.org/10.1016/j.landurbplan.2021.104217  

[15]  D.A. Quattrochi, J.C. Luvall, Thermal infrared remote sensing for analysis of landscape 
ecological processes: methods and applications, Landscape Ecology 14(6) (1999) 577-598. 
https://doi.org/10.1023/A:1008168910634  

[16]  J.A. Voogt, T.R. Oke, Effects of urban surface geometry on remotely-sensed surface 640 
temperature, International Journal of Remote Sensing 19(5) (1998) 895-920. 
https://doi.org/10.1080/014311698215784  

[17]  Q. Weng, Thermal infrared remote sensing for urban climate and environmental studies: 
Methods, applications, and trends, ISPRS Journal of Photogrammetry and Remote Sensing 
64(4) (2009) 335-344. https://doi.org/https://doi.org/10.1016/j.isprsjprs.2009.03.007  645 

[18]  M. Roth, T.R. Oke, W.J. Emery, Satellite-derived urban heat islands from three coastal cities 
and the utilization of such data in urban climatology, International Journal of Remote Sensing 
10 (1989) 1699-1720. https://doi.org/10.1080/01431168908904002  

[19]  C.P. Lo, D.A. Quattrochi, J.C. Luvall, Application of high-resolution thermal infrared remote 
sensing and GIS to assess the urban heat island effect, International Journal of Remote 650 
Sensing 18(2) (1997) 287-304. https://doi.org/10.1080/014311697219079  



20 
 

[20]  Q. Weng, D. Lu, J. Schubring, Estimation of land surface temperature–vegetation abundance 
relationship for urban heat island studies, Remote Sensing of Environment 89(4) (2004) 467-
483. https://doi.org/https://doi.org/10.1016/j.rse.2003.11.005  

[21]  H. Huanchun, Y. Hailin, D. Xin, H. Cui, L. Zhifeng, L. Wei, Z. Peng, Analyzing the 655 
Influencing Factors of Urban Thermal Field Intensity Using Big-Data-Based GIS, Sustainable 
Cities and Society 55 (2020) 102024. 
https://doi.org/https://doi.org/10.1016/j.scs.2020.102024  

[22]  A. Iino, A. Hoyano, Development of a method to predict the heat island potential using 
remote sensing and GIS data, Energy and Buildings 23(3) (1996) 199-205. 660 
https://doi.org/https://doi.org/10.1016/0378-7788(95)00945-0  

[23]  V. Equere, P.A. Mirzaei, S. Riffat, Y. Wang, Integration of topological aspect of city terrains 
to predict the spatial distribution of urban heat island using GIS and ANN, Sustainable Cities 
and Society 69 (2021) 102825. https://doi.org/https://doi.org/10.1016/j.scs.2021.102825  

[24]  I. Maduako, Z. Yun, B. Patrick, Simulation and prediction of land surface temperature (LST) 665 
dynamics within Ikom City in Nigeria using artificial neural network (ANN), Journal of 
Remote Sensing & GIS 5(1) (2016) 1-7.  

[25]  A.A. Kafy, F. Abdullah Al, M.S. Rahman, M. Islam, A. Al Rakib, M.A. Islam, M.H.H. Khan, 
M.S. Sikdar, M.H.S. Sarker, J. Mawa, G.S. Sattar, Prediction of seasonal urban thermal field 
variance index using machine learning algorithms in Cumilla, Bangladesh, Sustainable Cities 670 
and Society 64 (2021) 102542. https://doi.org/https://doi.org/10.1016/j.scs.2020.102542  

[26]  J. Huang, X. Tang, P. Jones, T. Hao, R. Tundokova, C. Walmsley, S. Lannon, P. Frost, J. 
Jackson, Mapping pedestrian heat stress in current and future heatwaves in Cardiff, Newport, 
and Wrexham in Wales, UK, Building and Environment 251 (2024) 111168. 
https://doi.org/https://doi.org/10.1016/j.buildenv.2024.111168  675 

[27]  T.R. Oke, Canyon geometry and the nocturnal urban heat island: comparison of scale model 
and field observations, Journal of climatology 1(3) (1981) 237-254.  

[28]  F. Bourbia, F. Boucheriba, Impact of street design on urban microclimate for semi arid 
climate (Constantine), Renewable Energy 35(2) (2010) 343-347. 
https://doi.org/https://doi.org/10.1016/j.renene.2009.07.017  680 

[29]  E. Johansson, Influence of urban geometry on outdoor thermal comfort in a hot dry climate: A 
study in Fez, Morocco, Building and Environment 41(10) (2006) 1326-1338. 
https://doi.org/https://doi.org/10.1016/j.buildenv.2005.05.022  

[30]  R. Carrasco-Hernandez, A.R.D. Smedley, A.R. Webb, Using urban canyon geometries 
obtained from Google Street View for atmospheric studies: Potential applications in the 685 
calculation of street level total shortwave irradiances, Energy and Buildings 86 (2015) 340-
348. https://doi.org/https://doi.org/10.1016/j.enbuild.2014.10.001  

[31]  D.R. Richards, P.J. Edwards, Quantifying street tree regulating ecosystem services using 
Google Street View, Ecological Indicators 77 (2017) 31-40. 
https://doi.org/https://doi.org/10.1016/j.ecolind.2017.01.028  690 

[32]  V.B. Andrew, E.T. John, C. Lee, U. David, R. Melanie, Modelling spatial and temporal road 
thermal climatology in rural and urban areas using a GIS, Climate Research 22(1) (2002) 41-
55.  

[33]  X. Wei, F. Guan, X. Zhang, N. Van de Weghe, H. Huang, Integrating planar and vertical 
environmental features for modelling land surface temperature based on street view images 695 
and land cover data, Building and Environment 235 (2023) 110231. 
https://doi.org/https://doi.org/10.1016/j.buildenv.2023.110231  

[34]  United States Geological Survey. https://earthexplorer.usgs.gov/. (Accessed 20 Nov 2023). 
[35]  National Aeronautics and Space Administration. https://www.earthdata.nasa.gov/. (Accessed 

20 Nov 2023). 700 
[36]  L.-C. Chen, G. Papandreou, F. Schroff, H. Adam, Rethinking Atrous Convolution for 

Semantic Image Segmentation, 2017, p. arXiv:1706.05587. 
[37]  K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, Proceedings of 

the IEEE conference on computer vision and pattern recognition, 2016, pp. 770-778. 
[38]  Cityspaces. https://www.cityscapes-dataset.com/. (Accessed 13, Dec 2023). 705 



21 
 

[39]  A. Paszke, A. Chaurasia, S. Kim, E. Culurciello, ENet: A Deep Neural Network Architecture 
for Real-Time Semantic Segmentation, 2016, p. arXiv:1606.02147. 

[40]  T. Kanungo, D.M. Mount, N.S. Netanyahu, C.D. Piatko, R. Silverman, A.Y. Wu, An efficient 
k-means clustering algorithm: analysis and implementation, IEEE Transactions on Pattern 
Analysis and Machine Intelligence 24(7) (2002) 881-892. 710 
https://doi.org/10.1109/TPAMI.2002.1017616  

[41]  C. Yuan, H. Yang, Research on K-Value Selection Method of K-Means Clustering 
Algorithm, J, 2019, pp. 226-235. 

[42]  M. Syakur, B. Khotimah, E. Rochman, B.D. Satoto, Integration k-means clustering method 
and elbow method for identification of the best customer profile cluster, IOP conference 715 
series: materials science and engineering, IOP Publishing, 2018, p. 012017. 

[43]  K.R. Shahapure, C. Nicholas, Cluster Quality Analysis Using Silhouette Score, 2020 IEEE 
7th International Conference on Data Science and Advanced Analytics (DSAA), 2020, pp. 
747-748. 

[44]  L.P. Rothfusz, N.S.R. Headquarters, The heat index equation (or, more than you ever wanted 720 
to know about heat index), Fort Worth, Texas: National Oceanic and Atmospheric 
Administration, National Weather Service, Office of Meteorology 9023 (1990) 640.  

[45]  G.B. Anderson, L. Bell Michelle, D. Peng Roger, Methods to Calculate the Heat Index as an 
Exposure Metric in Environmental Health Research, Environmental Health Perspectives 
121(10) (2013) 1111-1119. https://doi.org/10.1289/ehp.1206273  725 

[46]  V. Cheng, E. Ng, C. Chan, B. Givoni, Outdoor thermal comfort study in a sub-tropical 
climate: a longitudinal study based in Hong Kong, International Journal of Biometeorology 
56(1) (2012) 43-56. https://doi.org/10.1007/s00484-010-0396-z  

[47]  L. Zheng, W. Lu, L. Wu, Q. Zhou, A review of integration between BIM and CFD for 
building outdoor environment simulation, Building and Environment 228 (2023) 109862. 730 
https://doi.org/https://doi.org/10.1016/j.buildenv.2022.109862  

[48]  L. Zheng, W. Lu, Q. Zhou, Weather image-based short-term dense wind speed forecast with a 
ConvLSTM-LSTM deep learning model, Building and Environment 239 (2023) 110446. 
https://doi.org/https://doi.org/10.1016/j.buildenv.2023.110446  

[49]  A.J. Arnfield, Two decades of urban climate research: a review of turbulence, exchanges of 735 
energy and water, and the urban heat island, International Journal of Climatology 23(1) 
(2003) 1-26. https://doi.org/https://doi.org/10.1002/joc.859  

[50]  E. Ng, L. Chen, Y. Wang, C. Yuan, A study on the cooling effects of greening in a high-
density city: An experience from Hong Kong, Building and Environment 47 (2012) 256-271. 
https://doi.org/https://doi.org/10.1016/j.buildenv.2011.07.014  740 


	Abstract
	1. Introduction
	2. Related works
	2.1 GIS-based urban thermal pattern modeling
	2.2 SVI for urban thermal feature auditing

	3. Research methodology
	3.1 Data collection and processing
	3.2 Feature extraction and calculation
	3.2.1 GIS feature extraction
	3.2.2 Street view feature calculation

	3.3 Clustering analysis
	3.4 On-site thermal environmental data collection

	4. Study area and datasets
	5. Data analyses, results, and findings
	5.1 GIS data of collection points
	5.2 Street view factor of collection points
	5.3 Thermal environment classification of collection points
	5.4 Thermal gradient of collection points

	6. Discussion
	6.1 Significance of the GIS-street view feature integration and k-means clustering
	6.2 Limitations and future works

	7. Conclusion

