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Abstract 

Simulation-based optimization (SBO) is widely applied to building designs by iteratively 5 

tuning design parameters towards sustainable goals. However, numerous design parameters in 
exploratory stages lead to design uncertainty and exponentially increase optimization search 
space’s dimensionality. The non-linear, non-derivative nature of objective functions 
determines SBO tasks a black box, which lacks interpretability for design decisions or 
optimization strategies. This study introduces an Automatic Information Gain-guided 10 

Convergence (AIGGC) method for refining critical design parameters in building performance 
SBO. The AIGGC method extends the generic SBO process with interpretable information 
gain analysis for each design parameter and component, to converge to the most promising 
domain sub-intervals prior to traditional SBOs. Experimental results evaluated the robustness 
and scalability of AIGGC across two design scales. Under the same iteration budgets, AIGGC 15 

significantly enhanced three SBO algorithms, i.e., RBFOpt, CMAES, and GA, by 0.62~0.67% 
less energy use intensity and 2.14~4.74% more direct sunlight hours against the baseline 
solutions, respectively. The contribution of this study involves two aspects, including 
introducing a novel information-theory-based method for optimizing design parameters in 
high-dimensional SBO tasks of sustainable building designs, and a novel perspective in guiding 20 

stakeholders with interpretable analysis of building design parameters. 
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Highlights 25 

• A novel Information Gain-guided parameter convergence for complex sustainable designs 
• A sound information-theory-based method to enhance generic simulation-based 

optimization (SBO) 
• Automatic converging design parameters to most promising domain sub-intervals 
• Improved 3 SBO algorithms in 2 cases, by 0.62~0.67% less energy cost and 2.14~4.74% 30 

more sunlight hours 
• Interpretable guidance for stakeholders in sustainable design decision-making 
 

1 Introduction 

The building and construction sector significantly contributes to global climate change, 35 

accounting for 34 percent of global energy demand and 37 percent of greenhouse gas emissions 
(UNEP 2024). Nowadays, the sector follows sustainable planning guidelines and standards 
among countries, focusing on reducing building energy consumption and enhancing occupant 
well-being to create environmentally friendly buildings and urban neighborhoods (Luca et al. 
2024; He et al. 2024). The environmental performance analysis of buildings includes various 40 

aspects, such as energy consumption, thermal comfort, and daylighting (Zhan et al. 2024). 
Extensive research has shown that early-stage building design is critical to effectively 
enhancing these performance outcomes (Wang et al. 2024). By integrating simulation engines 
into visual programming environments, parametric modeling techniques can couple with 
simulation data to deliver instant performance feedback during design generation (Hinkle et al. 45 

2024).  
Simulation-based optimization (SBO) automates the design exploration process 

through iterative algorithms, enabling the identification of optimal or near-optimal solutions 
with less time and labor (Nguyen et al. 2014). Typically, an SBO process begins with defining 
the target design parameters and objective function, followed by an optimizer iteratively 50 

updating the design parameters to converge towards the optimal solution. Early-stage building 
design often involves a vast range of parameters that control the building’s physical 
components, materials, and systems (Wang et al. 2024; Zhan et al. 2024; Es-sakali et al. 2025). 
A large number of design parameters results in the uncertainty of potential designs and the 
exponential growth of the design search space, known as the ‘curse of dimensionality’ (Nguyen 55 

et al. 2014; Chen et al. 2015; Han et al. 2023). The high dimensionality of the search space 
complicates SBO convergence; furthermore, time-intensive simulations plus limited iteration 
budgets confine the efficiency in SBO. On the other hand, the non-linear, non-derivative nature 
of objective functions makes SBO a black box (Waibel et al. 2019), which limits 
interpretability for decision-makers and provides little insight into guiding the convergence of 60 

the design search space. 
Current frontier research employed sensitivity analysis techniques to quantify the 

importance of design parameters (Østergård et al. 2017; Brown & Mueller 2019; Hinkle et al. 
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2024). Some studies have incorporated surrogate models to replace simulation engines in SBO, 
enabling real-time interactive optimization (Lin et al. 2021; Han et al. 2023; Li et al. 2024). 65 

Others have explored visual analytics to enhance the interpretability of SBO results 
(Showkatbakhsh & Makki 2022). However, both sensitivity-based techniques and surrogate 
models rely on extensive simulation datasets for analysis and often need rerunning for different 
optimization tasks, requiring considerable time and labor. Additionally, while visualizing 
optimization results improves interpretability, it does not enhance optimization efficiency, 70 

leaving a research gap in improving the interpretability of the optimization convergence 
process. 

The uncertainty and lack of interpretability in high-dimensional SBO search spaces 
make it challenging for stakeholders to fully understand the SBO process. In this context, 
information entropy, a classical concept in information theory (Shannon 1948), provides the 75 

fundamental measure of uncertainty within a variable or dataset. The entropy reflects the 
amount of information gained when observing the outcome of a potential state. Information 
gain (IG), that quantifies changes in information entropy, is a classic descriptor for assessing 
feature importance during data partitioning (Zhang et al. 2022). IG is, therefore, widely applied 
in many fields, such as machine learning and data mining, to address the curse of 80 

dimensionality while enhancing model interpretability and decision-making capability (Omuya 
et al. 2021; Son & Hyun 2022). However, in the building and construction sector, few studies 
have conducted IG-based methods or analyses for SBO tasks. 

Our research aims to enhance the generic SBO process by incorporating IG-guided 
analysis for each design parameter and component, optimizing the initial parameter set to those 85 

most promising for improving building performance and thereby reducing the dimensionality 
of the search space. Additionally, the visualized results of IG-guided analysis provide 
interpretable insights for stakeholders, enabling them to independently navigate optimization 
convergence, and enhancing their understanding of the process. 

Therefore, this paper presents an Automatic IG-guided Convergence (AIGGC) method 90 

for refining design parameters in sustainable building designs. This method allocates a small 
portion of the iteration budget for first-phase optimization, using its results to conduct IG-
guided analysis of sub-intervals within each design parameter. This analysis aids stakeholders 
in automatically converging design parameters and identifying high-quality interval domains. 
The remaining iteration budget is then applied to re-optimize the converged parameters, further 95 

improving the solution. This paper tested the robustness and scalability of the proposed method 
on two prominent optimization objectives: minimizing the annual energy consumption of a 
typical modular flat in Hong Kong and maximizing sunlight hours on the ground floor of a 
south-facing urban block in Jianhu City. The contribution of this paper is thus twofold: (i) a 
novel information-theory-based method for optimizing design parameters in high-dimensional 100 

SBO tasks of sustainable building designs, and (ii) a novel perspective in guiding stakeholders 
with interpretable analysis of building design parameters. 
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2 Literature review 

2.1 Simulation-based optimization for buildings and construction 

SBO is recognized as a commonly used strategy for satisfying the sustainable requirements of 105 

high-performance building designs, both in research and practice. Since the late 2000s, the 
workflow of iteratively coupling optimization algorithms with simulation programs to 
approximate sub-optimal solutions has gained popularity (Evins 2013; Nguyen et al. 2014; 
Javanroodi et al. 2019). The generic SBO process can be divided in three phases: the first phase 
is the definition of the optimization task, including setting independent design parameters, 110 

objective functions, and constraints; then it follows by running optimization algorithms while 
monitoring convergence; and finally, the optimized data is transformed into visualized charts 
(Nguyen et al. 2014; Zhan et al. 2024). 

Optimization is the process of discovering the minimum or maximum of a function by 
selecting certain variables under given constraints (Machairas et al. 2014; Yu et al. 2023). In 115 

SBO, the objective function is typically a “black box” computed by third-party simulation 
engines, relying on complex physical models and climate data, making direct mathematical 
formulation infeasible (Evins 2013; Cruz et al. 2024). The highly non-linear, non-derivative 
mapping of multi-dimensional inputs defines SBO as a black-box optimization problem 
(Wortmann 2019; Waibel et al. 2019). Consequently, derivative-free algorithms, including 120 

Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Simulated Annealing (SA), 
Covariance Matrix Adaptation Evolution Strategy (CMA-ES), and RBFOpt, are widely 
employed in architectural design exploration (Machairas et al. 2014; Waibel et al. 2019). 
Statistics show that GA is the most frequently used among these algorithms (Evins 2013; 
Nguyen et al. 2014), while comparative studies have found that CMA-ES and RBFOpt 125 

outperform in black-box optimization for building design (Kämpf et al. 2010; Xue et al. 2019; 
Wortmann 2019; Rehbach et al. 2022). 

Energy performance optimization has been extensively studied in SBO tasks to mitigate 
buildings’ environmental impact (Evins 2013; Luca et al. 2024). By integrating energy 
simulation engines such as EnergyPlus, TRNSYS, and DOE-2, key metrics like cooling and 130 

heating loads and Energy Use Intensity (EUI) can be evaluated (Nguyen et al. 2014). Among 
building components, optimizing orientation, layouts, HVAC systems, envelope design, and 
openings play a crucial role in passively reducing energy consumption (Konis et al. 2016; 
Javanroodi et al. 2019; Mousavi et al. 2022; Gupta & Deb 2023; Zhou & Xue 2023). Notably, 
envelope optimization is essential for substantial energy savings, with studies showing 135 

reductions of up to 50% (Es-sakali et al. 2025). Optimizing the building envelope involves 
multiple factors, including wall materials, window-to-wall ratio (WWR), window shape, 
glazing, and shading (Hinkle et al. 2022; Wortmann et al. 2022). Among these, studies identify 
WWR as a major factor influencing building energy consumption (Wang et al. 2024).  

Daylight quality is also a crucial aspect of sustainable design exploration, serving as a 140 

critical indicator of livability and well-being (Fang & Cho 2019; Bushra 2022; Luca et al. 2024). 
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In the built environment, daylight accessibility is influenced by inter-building overshadowing, 
and numerous studies have shown that optimizing block morphology and layout can 
significantly enhance regional daylight quality (Javanroodi et al. 2019; Liu et al. 2023; Liu et 
al. 2024). 145 

Nowadays, researchers have developed a range of tools on Grasshopper and Dynamo 
platforms to integrate the whole generic SBO process, enabling architects to seamlessly 
transition from parametric modeling to simulation engines (e.g., Diva, Radiance, Honeybee, 
and Ladybug), and finally to optimizers and visualization tools such as Galapagos, Octopus, 
Wallacei, and Opossum (Javanroodi et al. 2019; Wortmann et al. 2022; Luca et al. 2024). 150 

However, given the high-dimensional design search space generated by numerous design 
parameters in early design stages, combined with the black-box nature of SBO, the generic 
SBO process still faces limitations in search efficiency and the interpretable guidance for 
optimization convergence. 

2.2 Design parameter analysis for convergence of search space 155 

The memory and computational cost may rise exponentially and become difficult to navigate 
as more design parameters are brought into the SBO task (Nguyen et al. 2014). In practice, the 
convergence of design parameters is heavily influenced by the designer’s prior knowledge 
(Brown & Mueller 2019; Wang et al. 2024). However, this process can be particularly 
challenging for other stakeholders with little design experience. Therefore, implementing a 160 

systematic converging and analysis approach in the early design stages is essential to maintain 
a manageable and effective set of design parameters. 

Previous studies have conducted design parameters analysis through literature reviews 
(Zhou et al. 2023), sensitivity analysis (Tian 2013; Østergård et al. 2017), or machine learning-
based feature selection method (Olu-Ajayi et al. 2022; Liu et al. 2022; Hinkle et al. 2024). 165 

Zhou et al. (2023), for instance, reviewed 50 papers published between 2010 and 2022, 
summarizing eight types of design parameters that significantly impact building environmental 
performance. This review helps to focus on the categories of design parameters in SBO. 
Sensitivity analysis is commonly divided into local and global approaches (Tian 2013), with 
global sensitivity analysis being more widely used in building analysis due to the non-linear, 170 

multi-modal, and discontinuous character of building simulation results (Nguyen et al. 2014). 
Global sensitivity analysis methods include regression techniques (e.g., Standardized 
Regression Coefficients and Standardized Rank Regression Coefficients), screening-based 
methods (e.g., the Morris method), variance-based methods (e.g., Fourier Amplitude 
Sensitivity Test and Sobol method), and meta-modeling approaches (e.g., Multivariate 175 

Adaptive Regression Splines and Support Vector Machines). Machine learning-based feature 
selection methods, such as Random Forest (RF) or Extra Trees classifiers, apply recursive 
assessment of feature importance by evaluating the effect of adding or removing individual 
features (Olu-Ajayi et al. 2022; Liu et al. 2022; Tian et al. 2024).  
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While Zhou et al. (2023) emphasize the categories of design parameters in SBO, it has 180 

a limited impact on reducing the dimensionality of the optimization search space. In contrast, 
most global sensitivity analyses require extensive large-scale sampling techniques, such as 
Monte Carlo or Latin Hypercube Sampling, which is impractical for SBO tasks with time-
intensive simulations, as each simulation can take several minutes or even hours (Tian 2013; 
Nguyen et al. 2014; Østergård et al. 2017). Additionally, machine learning-based feature 185 

selection methods provide important metrics through training; however, if variables or their 
value boundaries change, retraining becomes necessary to maintain accuracy, which increases 
computational costs (Hinkle et al. 2024). Therefore, effectively screening design parameters 
without increasing computational burden and seamlessly integrating this process into the SBO 
workflow remains a research challenge in SBO tasks. 190 

2.3 Information gain and applications  

Given the uncertainty and lack of interpretability in high-dimensional SBO, information theory 
provides a possible approach to addressing these challenges. In information theory, information 
entropy is proposed as the metric for uncertainty or randomness within a dataset (Shannon 
1948). And information gain (IG) is an entropy-based feature evaluation method widely used 195 

in machine learning (Zhang et al. 2022). In decision trees, it helps to choose the feature that 
best splits the data, with higher IG indicating more effective sample separation and improved 
classification (Kotsiantis 2013). Chen and Hao (2017) applied IG to rank feature importance 
in stock market indices prediction, providing a basis for computing feature weights in weighted 
Support Vector Machines. Besides, Omuya et al. (2021) utilized an IG-based feature selection 200 

technique to address the curse of dimensionality, improving the accuracy and overall 
performance of machine learning algorithms. 

In the building design sector, limited research has integrated information entropy or 
information gain. Hester et al. (2018) were the first to apply information entropy in early-stage 
building design optimization, quantifying the flexibility of uncertain or probabilistic designs 205 

during iterative refinement and optimization. Son et al. (2022) developed a proactive design 
exploration system incorporating Bayesian information gain and information entropy to 
provide designers with guidance feedback during the design exploration process. Additionally, 
other researchers employed information gain to determine criterion weights in multi-criteria 
decision-making (Weerasuriya et al. 2021; Zhang et al. 2022). However, information gain-210 

guided methods remain scarce in high-dimensional SBO tasks, revealing a gap in the research. 

3 Research methods 

This paper demonstrates the effectiveness of the Automatic Information Gain-guided 
Convergence (AIGGC) method in early-stage building design through two sustainable design 
case studies. The overall workflow is illustrated in Figure 1.  215 
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Figure 1. The proposed workflow for Automatic IG-guided Convergence of design 

parameters. 
Distinct from the generic SBO process, which optimizes the program by running the 

total iteration budget once, this method allocates a small portion of the total budget for first-220 

phase optimization. The optimized results from first-phase optimization, comprising objective 
function values and corresponding design parameter sets, are then utilized as a dataset for IG-
guided analysis. Second, the dataset is pre-processed, and the initial domain intervals of the 
design parameters are partitioned. IG is then calculated for each sub-interval, enabling 
automatic convergence by prioritizing high-information design parameters based on the total 225 

IG score. The IG-guided visual analysis provides stakeholders with interpretable insights from 
both design parameters and components, allowing them to converge design parameters and 
gain a deeper understanding of influential components. Finally, the converged design 
parameters are adopted for the second phase of optimization. 

3.1 Information gain-guided approach for automatic convergence 230 

3.1.1 Design the allocation of iteration budget 
As shown in Figure 1, the AIGGC method consists of two optimization phases. First, building 
designers set the total iteration budget (N) and determine the distribution ratio (rd) between the 
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two phases, resulting in the pre-convergence budget (N1 = N × rd) and the post-convergence 
budget (N2 = N − N1). In the second phase, the converged design parameters based on IG-235 

guided visual analysis are re-inputted into the optimizer to finally find the optimal solution. 
The optimization settings and algorithm remain the same across both phases. 
3.1.2 Dataset preprocessing 
The first-phase optimization generates a dataset of optimized design solutions (S) and 
corresponding objective function values f(S), organized as a matrix. The first row lists the 240 

names of design parameters and the objective function, while each subsequent row represents 
an optimized solution. The matrix is then sorted by the optimization objective in ascending 
order (for minimizing f(x)) or descending order (for maximizing f(x)). Subsequently, inspired 
by the elitism strategy in GA, the dataset is categorized into ‘elite’ and ‘non-elite’ groups based 
on a designer-defined elite ratio (re), as shown in Figure 2. 245 

 
Figure 2. Detailed procedures of IG-guided automatic convergence. 

3.1.3 Decomposing the domain of design parameters 
The initial design parameter domains (R) are divided into multiple sub-interval bins using the 
partitioning method (BinM), and the number of bins (Nb) determines the analytical granularity. 250 

This partitioning process helps to analyze the distribution of pre-optimized solutions within 
each sub-interval bin after the first-phase optimization and to calculate the probability of 
solutions belonging to the ‘elite’ group. In addition, it aids in targeting promising regions of 
design parameters for further optimization. 

This study proposes three approaches for the partitioning method (BinM ∈ Ζ): (1) BinM 255 

= 10, dividing each design parameter domain into 10 bins; (2) BinM = N1 /10, with the number 
of bins set to the integer value of the pre-convergence budget (N1) divided by 10; (3) BinM = 

�𝑁𝑁1, with the number of bins set to the integer value of the square root of the pre-convergence 
budget (N1). 
3.1.4 IG-guided Automatic Convergence 260 

The information gain (γ) for each design parameter can be computed automatically according 
to Algorithm 1. The algorithm takes as input a set of solutions (S) with their objective function 
values f(S), the design parameter’s initial domain range (R), the elite ratio (re), and the number 
of bins (Nb). 
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 265 

Algorithm 1 first computes the baseline entropy (e0), assuming an equal distribution of 
elite solutions across the parameter range. The algorithm determines the threshold value of f 
for elite solutions to identify the elite solutions (SE). The initial range R is then decomposed 
into Nb equally spaced sub-intervals I. For each sub-interval i, the entropy of elites in i is 
calculated by the probability p of elite solutions. The algorithm also computes the probability 270 

r of input solutions S in each sub-interval, and accumulates the weighted entropy (ew) by 
weighting the elite entropy with probability r before summing across sub-intervals. Finally, the 
information gain (γ) is computed as the difference between the baseline entropy (e0) and the 
accumulated weighted entropy (ew). A higher IG value for a design parameter indicates greater 
importance in reducing the uncertainty of finding the optimal solution within the search space. 275 

Algorithm 2 and Figure 2 show the following steps, which converge design parameter 
intervals based on IG values, improving optimization efficiency by either converging interval 
ranges or fixing parameters as constants. Algorithm 2 takes as input the number of design 
parameters (n), corresponding initial domain range (R), corresponding information gains (Γ), 
and the corresponding sub-intervals (I). Additionally, it requires a set of elite solutions (SE) and 280 

two ratios: rconv, associated with the highest IG, which determines the subsets of parameters 
that should converge; and rconst, associated with the lowest IG, which defines the subsets of 
parameters that should be fixed to constants. Specifically, the lower threshold (γconv) of gain to 
converge is set at the (1 - rconv) percentile of the information gains, while the upper threshold 
(γconst) of gain to constant is set at the rconst percentile.  285 
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For each design parameter, the algorithm applies a three-way decision rule based on its 

information gain (γi). If the gain γi is greater than or equal to γconv, the parameter range is 
converged by removing sub-intervals that do not appear in elite solutions. If the gain γi is less 
than or equal to γconst, the parameter is converted to a constant value, which is determined as 290 

the design value observed in the optimum of elite solutions. Otherwise, the parameter range 
remains unchanged. Finally, the converged set of parameter ranges R* is returned. This process 
effectively reduces the design search space by eliminating irrelevant or highly stable parameter 
variations, thereby improving the efficiency of the second-phase optimization. 
3.1.5 Interpretable analysis of building design parameters and components 295 

The IG-guided interpretable analysis starts with information from design parameters, traces 
their association with different design components, and finally provides stakeholders with 
guidance on overall design strategies. As shown in the Sankey diagram in Figure 3(a), design 
parameters originally belonging to various design components are ranked based on their IG 
values and subsequently categorized into three subsets, corresponding to different modes of 300 

domain interval convergence. Figure 3(b) further explains and visually presents the 
convergence modes within three IG-guided subsets. Furthermore, the IG values of individual 
design parameters can be aggregated to evaluate their associated design components, 
highlighting the most impactful components for design optimization within the given SBO task. 
The IG-guided interpretable analysis explicitly demonstrates the convergence to effective sub-305 

intervals during the SBO process while effectively supporting designers and stakeholders in 
making informed design decisions. 



11 
 

 
Figure 3. An example visualization for interpretable analysis in AIGGC. (a) Flow of design 

parameters information: from design components to IG-guided subsets. (b) Visual 310 

transformation from initial to converged domain intervals. (c) Illustration of IG ranking for 
design components. 

3.2 Case study 

To evaluate the robustness and scalability of the proposed method, we applied AIGGC to 
enhance three optimization algorithms to SBO tasks in two scales. The first conducted 315 

sustainable design optimization for energy efficiency at the building scale, while the other 
optimized daylight quality at the urban scale. Residential energy consumption has steadily risen 
in recent years, highlighting the need for sustainable building technologies (Qin & Pan 2020; 
Zhou & Xue 2023). Modular construction, known for its productivity, reusability, and pollution 
reduction, is extensively studied and particularly vital in Hong Kong due to its dense population 320 

and limited land resources (Zhou & Xue 2023). This paper optimizes the design of modular 
flats based on the building dimensions published by the Hong Kong Housing Authority (HKHA 
2015). Given the floor layout of a one-bedroom modular flat, the building envelope was 
optimized to minimize energy consumption. Additionally, daylight quality, which significantly 
impacts residents’ quality of life, is affected by mutual shading among urban buildings (Liu et 325 

al. 2023). Therefore, optimizing building forms during the early stages of urban block 
development is also essential for enhancing daylight accessibility and improving living 
conditions. 
3.2.1 Definition of initial design parameters 
The first design case focuses on optimizing the building envelope of a modular flat in Hong 330 

Kong, designed for 1-2 occupants, with an internal floor area rationalized to 14.1~14.5 m2. 
Hong Kong has a subtropical climate, with warm and humid conditions year-round. Summers 
are long and hot, with dry-bulb temperatures exceeding 30°C, leading to a high energy demand 
for cooling (Zhou & Xue 2023). To enhance passive energy efficiency, we further optimize the 
envelope components. Numerous studies have identified the window-to-wall ratio (WWR) as 335 

a significant factor influencing building energy consumption (Wang et al. 2024). Besides, we 
consider details such as window shape (where variations in window height, given a fixed WWR, 
determine the window’s width), sill height, and the angle and number of louvers used for 
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shading, as illustrated in Figure 4(a). The design scheme includes four façades to be optimized, 
comprising 11 continuous variables, 7 discrete variables, and 4 binary variables. The specific 340 

design parameters and their domain intervals are shown in Table 1. 

 
Figure 4. Design cases to be optimized. (a) Case 1: Envelope design optimization for one-

bedroom modular flat; (b) Case 2: Urban block forms design optimization. 
Table 1. Description of envelope design parameters for one-bedroom modular flat. 345 

Design parameters Parameter 
type 

Unit Parameter domain intervals Precision 

Window-to-Wall Ratio (WWR1, WWR2) Continuous - 0.1 ≤ WWR1, WWR2 ≤ 0.6 0.01 
Window-to-Wall Ratio (WWR3, WWR4) Continuous - 0.1 ≤ WWR3, WWR4 ≤ 0.3 0.01 
Window height (WH1&2) Discrete m 1.0 ≤ WH1&2 ≤ 2.0 0.1 
Window height (WH3, WH4) Discrete m 1.0 ≤ WH3, WH4 ≤ 1.5 0.1 
Window sill height (WSH1&2, WSH3, WSH4) Continuous m 0.80 ≤ WSH1&2, WSH3, WSH4 ≤ 1.20 0.01 
Window louvers count (LC1, LC2, LC3, LC4) Discrete - 1 ≤ LC1, LC2, LC3, LC4 ≤ 6 1 
Window louvers angle (LA1, LA2, LA3, LA4) Continuous ° -45 ≤ LA1, LA2, LA3, LA4 ≤ 45 1 
Window louvers direction (LVH1, LVH2, 
LVH3, LVH4) 

Binary - Horizontal = 0; Vertical = 1 - 

The second design case focuses on optimizing the building forms of urban blocks in 
Jianhu City, located in Jiangsu Province, China. The selection of initial design parameters is 
based on the findings of Liu et al. (2023). As shown in Figure 4(b), the urban block consists of 
nine zones, numbered from 0 to 8. According to the generative rules by Liu et al., one of these 
zones is designated as open space, while the remaining eight plots are selected from nine typical 350 

building combinations. These building combinations are derived from actual residential 
clusters in Jianhu City and are categorized into three major types: point-type buildings 
(including P-1, P-2, P-3, and P-4), slab-type buildings (including S-1, S-2, S-3), and courtyard-
type buildings (including C-1 and C-2). Specifically, P-1, S-1, and C-1 are low-rise buildings; 
P-2, S-2, and C-2 are mid-rise buildings; P-3, P-4, and S-3 are high-rise buildings; with their 355 

respective floor number counts detailed in Table 2. Each block is uniformly south-facing, with 
a floor area ratio (FAR) of approximately 2.5. There are 1 discrete variable, 9 continuous 
variables, and 8 categorical variables.  
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Table 2. Description of urban block form design parameters. 360 

Design parameters Parameter 
type 

Unit Parameter domain intervals Precision 

Open space location (OPos) Discrete - [0, 1, 2, 3, 4, 5, 6, 7, 8] 1 
Building type of remaining plots (Pos1, 
Pos2, Pos3, Pos4, Pos5, Pos6, Pos7, Pos8) 

Categorical - [P-1, S-1, C-1, P-2, S-2, C-2, P-3, P-4, 
S-3] 

- 

Number of floors (NFP1, NFS1, NFC1, NFP2, 
NFS2, NFC2, NFP3, NFP4, NFS3) 

Continuous - 1 ≤ NFP1, NFS1, NFC1≤ 3 
4 ≤ NFP2, NFS2, NFC2≤ 12 
13 ≤ NFP3, NFP4, NFS3≤ 30 

1 

3.2.2 Definition of objective functions 
In the first design case, we aim to minimize energy use intensity and the objective function can 
be concluded as: 

arg minx∈X EUI(x) (1) 

Where EUI is the energy use intensity (kWh/m2·yr) that can be calculated by dividing 
the total annual energy consumption over the gross floor area (Konis et al. 2016), x represents 365 

a combination of the n design parameters (x1, x2, ..., xn), and X indicates the set of all potential 
design combinations. The optimization problem’s dimensionality is defined by n, determining 
the search space complexity and computational effort. The numerical computing of EUI is 
performed using the Honeybee components in the Grasshopper platform (Zhou & Xue 2023). 
First, the Honeybee-Radiance (Ver.1.5) component integrates context data (Qin & Pan 2020), 370 

including local climate, construction materials, construction type, and HVAC systems, to 
simulate annual daylight based on a predefined grid size (Gs1). The results are then utilized to 
set up the daylight control schedule for the target model. Next, the context data and the 
generated schedule are passed to the Honeybee-OpenStudio (Ver.1.5) component, which 
translates this information to create an energy model (.osm) and convert it into a .idf file for 375 

total EUI calculation via the built-in EnergyPlus program (Roudsari & Pak 2013). According 
to Qin and Pan (2020), the EUI of local modular flats in Hong Kong is generally 153.8 
kWh/m2·yr. 

In contrast, the second design case focuses on an opposing optimization objective: 
maximizing the average direct sunlight hours on the south-facing ground floors of urban blocks 380 

in Jianhu City. Jianhu City is situated in the hot summer and cold winter (HSCW) climate zone. 
According to mainland China’s building code (MOHURD 2018), residential buildings in this 
zone must receive at least two hours of sunlight on the south-facing ground floor on the coldest 
day of the year, i.e., January 20th (Liu et al. 2023). We formulate the function as follows: 

arg maxy∈Y 1
𝑚𝑚

 ∑ 𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖(𝑦𝑦)𝑚𝑚
𝑖𝑖=1  

subject to | FARori – FARopt |≤ 0.05 

(2) 

Where DSHi(y) is the direct sunlight hours for the i-th sampling point as a function of 385 

the design parameter y, m means the total number of sampling points determined by the 
simulation grid size (Gs2), and Y denotes the set of all design parameters. The constraint is that 
the absolute difference between the optimized block’s floor area ratio (FARopt) and the original 
block’s FAR (FARori = 2.5) must be less than 0.05. The DSHi(y) can be simulated through 
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the Ladybug-Direct Sun Hours (Ver.1.5) component, which calculates direct sunlight hours on 390 

geometry using sun vectors and ray intersection methods (Roudsari & Pak 2013). 
3.2.3 Optimization algorithms selection 
In this study, both design cases are single-objective optimization tasks. To evaluate the 
robustness of the proposed method, we compared three optimization algorithms with distinct 
search strategies, GA, CMA-ES, and RBFOpt, which are integrated into Grasshopper and 395 

interact smoothly with the design parameters and simulation engines. Statistical data indicates 
that GA has been the most frequently used algorithm in single-objective SBO tasks over 
decades (Evins 2013; Nguyen et al. 2014). Moreover, CMA-ES and RBFOpt have 
demonstrated efficiency advantages in black-box optimization for sustainable building design 
(Kämpf et al. 2010; Xue et al. 2019; Wortmann 2019; Rehbach et al. 2022). 400 

GA is a population-based metaheuristic algorithm inspired by natural selection, 
iteratively generating new populations through selection, mutation, and crossover (Katoch et 
al. 2021). CMA-ES aims to reduce the stochastic nature of evolutionary strategies by using the 
Covariance Matrix (CM) in each iteration, which has been shown to be an efficient method in 
building design optimization, especially for small population sizes (Hansen et al. 2003; 405 

Ramallo-González & Coley 2014). RBFOpt is a model-based algorithm that applies sampling 
points to refine an approximation model for the unknown objective function (Waibel et al. 
2019). GA can be implemented in the Galapagos plugin, while CMA-ES and RBFOpt can be 
operated in the Opossum plugin.  

4 Experimental tests 410 

4.1 Experimental settings 

The experiments were conducted on a desktop computer with an Intel (R) Core i7-10700 CPU 
@ 2.90 GHz processor and 32 GB memory. In this study, both design cases were parametrically 
reconstructed in Rhinoceros3D (Ver.7.0) and the visual programming platform Grasshopper, 
based on the detailed dimensions provided by the Hong Kong Housing Authority (HKHA 2015) 415 

and the published work of Liu et al. (2023), respectively. 
The first sustainable design case utilized the Ladybug-EPWmap (Ver.1.5) component 

to obtain meteorological data for Hong Kong (ASHRAE 2021). The Honeybee plugin assigned 
physical properties of construction materials to the parametric model, including thickness, 
conductivity, density, specific heat capacity, and U-value, following (Qin & Pan 2020). The 420 

EUI value was then calculated via the Honeybee-Radiance (Ver.1.5) and Honeybee-
OpenStudio (Ver.1.5) components, with a sensor grid size (Gs1) of 0.2 meters. The original one-
bedroom modular flat served as the baseline, with its design parameters used as initial 
optimization inputs, resulting in an EUI value of 159.599 kWh/m2·yr, as detailed in Table 1 in 
the Appendix. 425 

Similarly, in the second sustainable design case, climate data for Jianhu City was 
collected using the Ladybug-EPWmap (Ver.1.5) component and processed through the 
Ladybug-SunPath (Ver.1.5) component to obtain the sun position between 8:00 a.m. and 5:00 
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p.m. on January 20th (i.e., the coldest day). The resulting sunlight vector data was then fed into 
the Ladybug-Direct Sun Hours (Ver.1.5) component to calculate the direct sunlight duration on 430 

the ground floor of a south-facing urban block. The sensor grid size (Gs2) was set to 1 meter 
for this urban-scale optimization. The baseline urban model’s parameters are listed in Table 2 
of the Appendix, with a corresponding DSH value of 6.081 hours. 

This experiment evaluated the robustness and advantages of the AIGGC method across 
two design cases using different SBO algorithms, i.e., RBFOpt, CMA-ES, and GA. Since many 435 

algorithms contain randomized factors during the optimization process (Waibel et al. 2019), 
each algorithm was rerun 5 times for Case 1 (as a single set of runs required 36 hours) and 20 
times for Case 2 to ensure reliable results.  

For the three SBO algorithms, this experiment included an experimental group with 
AIGGC and a control group without AIGGC under the same iteration budget. The detailed 440 

hyperparameter settings for the single-objective algorithms are described in Appendix Table 3, 
referring to previous literature (Waibel et al. 2019). For both design cases, the total iteration 
budget (N) was set to 300 with a distribution ratio (rd) of 1:2, resulting in the pre-convergence 
budget (N1) as 100 and the post-convergence budget (N2) as 200. The elite ratio (re) was set to 
20% to classify the solutions into ‘elite’ and ‘non-elite’ groups. The partitioning method for 445 

sub-interval bins was chosen as BinM (Nb) = 10, which divided each design parameter domain 
into 10 bins. For design parameters convergence, rconv and rconst were both set to one-third. 

4.2 Experimental results and analysis 

4.2.1 Optimized results with AIGGC 
The experimental results compare the best of optimized design solutions from multiple runs of 450 

the three SBO algorithms (i.e., RBFOpt, CMAES, and GA), using the AIGGC method, against 
the baseline design solution, as detailed in Table 3. RBFOpt, after five reruns of three SBO 
algorithms, provided the best optimization result in Case 1, resulting in a minimum EUI value 
of 149.149 kWh/m2·yr. Compared to the baseline design solution, all four window façades 
showed a significant increase in the number of louvers. Notably, except for the first window, 455 

the remaining three featured a vertical louver design. 
Table 3. Comparison between the best of optimized solutions with AIGGC and the baseline 
solution. 

 Best optimized 
solution based on 

AIGGC 

Baseline design 
solution  Best optimized 

solution based on 
AIGGC 

Baseline design 
solution 

Case 1 

  

Case 2 

  
EUI 

(kWh/m2·yr) 
149.149 159.599 DSH 

(hours) 
9.000 6.081 

Algorithm RBFOpt Algorithm RBFOpt 
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 In Case 2, RBFOpt still stands out among the other algorithms across 20 reruns, 
achieving the optimal DSH value of 9 hours under the constraints of a given floor area ratio. 460 

The P-1 building cluster most frequently appeared in the best solution from multiple runs, with 
a noticeable trend of locating lower-rise blocks in the southern plots and higher-rise buildings 
in the northern plots. 

4.2.2 Robustness and significance across different optimization algorithms 
Table 4 compares the average and best objective performance values among three SBO 465 

algorithms between the experimental group (With AIGGC) and the control group (NO AIGGC), 
as well as the magnitude and significance of performance improvements achieved by AIGGC. 
The result demonstrates that incorporating AIGGC into SBO algorithms consistently improves 
optimization performance across multiple runs, with statistically significant enhancements in 
average results. Notably, RBFOpt shows the best overall performance among all algorithms, 470 

achieving the best solution in both cases. 
Table 4. The magnitude and significance of AIGGC’s performance in improving SBO 
algorithms in multiple runs. 

Case Objective function f* 
(Baseline value v0) 

SBO 
algorithm 

Average SBO results  Best solution 
NO 

AIGGC  
With 

AIGGC  Δ % Imp.† Sig.# NO 
AIGGC  

With 
AIGGC  Δ 

1 min EUI  
(159.599 kWh/m2·yr) 

RBFOpt 150.289 149.301 -0.988 0.62 0.008 149.719 149.149 -0.57 
CMA-ES 151.961 150.935 -1.026 0.64 0.019 151.429 150.099 -1.33 
GA 155.305 154.241 -1.064 0.67 0.018 154.469 153.709 -0.76 

2 max DSH  
(6.081 hours) 

RBFOpt 8.449 8.579 0.130 2.14 0.036 8.764 9.000 0.236 
CMA-ES 7.997 8.202 0.205 3.37 0.037 8.554 8.708 0.154 
GA 7.977 8.265 0.288 4.74 0.000 8.329 8.680 0.351 

*: Smaller values are better for Case 1 and larger values are preferred for Case 2. 
†: Improvement by percentage, | Δ |/v0 × 100%, v0 for baseline value. 
#: Two-tailed p-value of independent t-test, bold when p-value < 0.05. 

In Case 1, where a lower EUI value is preferred, AIGGC leads to a reduction in the 
average EUI across all algorithms, with the improvement percentage ranging from 0.62% to 475 

0.67%. With the incorporation of AIGGC, RBFOpt reduced the average EUI from 150.289 
kWh/m2·yr (NO AIGGC) to 149.301 kWh/m2·yr. CMA-ES and GA also showed 
improvements with AIGGC, achieving average EUI reductions of 0.64% (from 151.961 to 
150.935 kWh/m2·yr) and 0.67% (from 155.305 to 154.241 kWh/m2·yr), respectively. 
Moreover, RBFOpt achieved the best performance value of 149.149 kWh/m2·yr after five 480 

reruns, representing a 3.024% improvement compared to the general EUI of local modular flats, 
which is 153.8 kWh/m2·yr. 

In Case 2, where higher DSH values are desirable, AIGGC similarly enhances the 
performance of all three algorithms, with the improvement percentage ranging from 2.14% to 
4.74% across 20 repeated runs. When combined with AIGGC, RBFOpt achieved an average 485 

DSH of 8.579 hours, which is 0.13 hours higher than without AIGGC. Similarly, CMA-ES and 
GA showed notable enhancements with AIGGC, achieving average sunlight hours 
improvements of 3.37% (from 7.997 to 8.202 hours) and 4.74% (from 7.977 to 8.265 hours), 
respectively. The best DSH value obtained with AIGGC was 9.000 hours, followed by 8.708 
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hours identified by CMA-ES and 8.680 hours identified by GA, all significantly exceeding the 490 

two-hour requirement specified in the local residential building code. 
The statistical significance of the performance improvements was evaluated using the 

independent two-tailed t-test. For both cases, RBFOpt consistently showed significant 
improvements when AIGGC was applied (two-tailed p = 0.008 < 0.05 for Case 1 and p = 0.036 
< 0.05 for Case 2). The significant p-values across all algorithms validate the robustness and 495 

reliability of the AIGGC method, demonstrating its ability to improve optimization 
performance under different objectives and scenarios. 

Figure 5 (a) and (b) apply violin plots to compare the deviations of best performance 
values achieved by three SBO algorithms under two conditions. The ‘NO AIGGC’ control 
group is represented in blue, the ‘AIGGC’ experimental group is in red, and the baseline is 500 

indicated by a red dashed line. In both cases, the median values of the ‘AIGGC’ group 
consistently outperform those of the ‘NO AIGGC’ group, with the ‘AIGGC’ group showing a 
larger overall deviation from the baseline, indicating a more significant improvement. Overall, 
the RBFOpt algorithm with the AIGGC method exhibits the most concentrated distribution and 
is more efficient in finding the minimum solution for EUI and the maximum solution for DSH. 505 

 
Figure 5. Comparison of optimal performance deviations of three optimization algorithms 

with and without AIGGC. (a) Case 1: Minimize EUI; (b) Case 2: Maximize DSH. 



18 
 

 
Figure 6. Convergence trend of optimization with and without AIGGC. (a) Case 1: Minimize 510 

EUI; (b) Case 2: Maximize DSH. 
Figure 6 (a) and (b) illustrate the optimization line graphs of RBFOpt achieving the best 

performance in two cases, i.e., 149.149 kWh/m2·yr for Case 1 and 9.000 hours for Case 2. The 
convergence trends highlight the performance improvements achieved by integrating the 
AIGGC method. The blue lines represent the control group without AIGGC, while the red lines 515 

represent the experimental group with AIGGC. The thin solid lines depict the iterative solution 
values during the optimization process, and the thick solid lines indicate the best objective 
values achieved so far. It can be observed that in high-dimensional optimization problems, 
algorithms without AIGGC struggle to converge in the later stages and often get trapped near 
sub-optimal solutions. In contrast, optimization algorithms incorporating AIGGC can apply 520 

IG-guided information to identify superior solutions. According to the experimental settings, 
the group with AIGGC first used 100 iterations to compute a dataset, followed by IG-guided 
analysis and refining of the design parameters. The results demonstrate that the experimental 
group, with converged design parameters, quickly surpassed the control group within the 50 
iterations in the second phase, while the control group ran for 150 iterations. Statistically, 525 

AIGGC performed a faster descent/ascent in Figure 6. The fast descent/ascent confirms the 
hypothesis that reducing the dimensionality of the design search space enhances the efficiency 
of the RBFOpt algorithm. 
4.2.3 Design parameters and components analysis 
Figures 7 and 8 illustrate the reduction in the number of design parameters and the size of the 530 

potential solution space before and after IG-guided analysis for both cases. In Case 1, the initial 
four design components included 22 design parameters, with a fine-grained division of the total 
domain intervals revealing 4.45×1025 possible solutions. After applying the AIGGC method to 
calculate, rank, and group the IG value for each design parameter, the number of design 
parameters was reduced to 16, with 8 partially converged and 8 remaining unchanged. 535 

Consequently, the design solution space size decreased sharply to 6.30×1018, by seven orders 
of magnitude. Similarly, in Case 2, the design parameters were reduced from 18 to 12, with 6 
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partially converged and 6 unchanged, while the solution space shrank from 4.45×1016 to 
2.21×109 by seven orders of magnitude. 

 540 

Figure 7. Detailed visualization of the design parameter convergence process for RBFOpt’s 
best performance solution in Case 1. 
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Figure 8. Detailed visualization of the design parameter convergence process for RBFOpt’s 
best performance solution in Case 2. 545 

Figure 9 presents a series of heatmaps visualizing the average probability associated 
with the sub-interval bins of each design parameter. The probability indicates the likelihood of 
solutions within a given bin belonging to the ‘elite’ group. The color intensity of the heatmap 
reflects the probability magnitude, with darker colors corresponding to higher probabilities. 
Blank regions denote that there are no design solutions within those sub-interval bins. The bin 550 

sequence is arranged from 1 to 10, representing the full domain range of each design parameter 
from smallest to largest. On the right side, a bar chart illustrates the average IG value of each 
design parameter observed in this experiment. 

 
Figure 9. Visualization of design parameters’ average IG values and probabilities of sub-555 

interval bin contributions to the ‘elite’ group. 
In Case 1, the window-to-wall ratio (WWR) and window louvers’ angle (LA) exhibit 

relatively high IG values overall, with WWR1 showing the highest average IG value. The results 
suggest that decision-makers may focus on adjusting the values of WWR and LA to minimize 
energy use intensity efficiently. Moreover, high-probability sub-intervals for WWR are 560 

concentrated in the larger bin indices (i.e., bins 9th and 10th), which means that when the WWR 
of façades 1 and 2 approaches 0.5 to 0.6, and that of façades 3 and 4 approaches 0.27 to 0.3, 
the likelihood of achieving low-EUI design solutions increases. Similarly, for LA2, the 2nd bin 
emerges as a promising sub-interval, suggesting that setting LA2 between -35° and -27° is more 
effective for high-performance building design exploration. In contrast, the parameter LVH 565 

contributes minimally to the optimization objective regarding IG value and probability. 
In Case 2, OPos shows the highest average IG value, with higher probabilities of 

approaching high-DSH solutions concentrated in sub-interval bins 2nd, 5th, and 9th, 
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corresponding to plots 1st, 4th, and 7th in the urban block design. For building clusters of P-1, 
S-1, and C-1, the suggested number of floors is primarily concentrated in the 1st and 2nd bins, 570 

indicating single- or double-story configurations. Moreover, for clusters P-2, S-2, and C-2, 
higher probabilities of optimal solutions are found from bins 1st to 3rd, with a preferred range 
of four to six floors. And the suggested floor numbers for P-3, P-4, and S-3 building clusters 
are 25–26, 27–28, and 17–18, respectively. Regarding plot allocation, S-1 is applicable for 
most plots, whereas C-2 presents a lower likelihood of existing good design solutions across 575 

all plots. P-1 and S-3 are recommended for plots 4th and 8th, respectively. 
Analyzing the IG values of design components is also meaningful, as it highlights their 

importance in reducing the uncertainty of finding optimal solutions within the optimization 
search space. Figure 10(a) and (b) compare the average IG values of design components and 
parameter categories in Case 1. Specifically, Win_01 demonstrates the highest IG value (0.75), 580 

followed by Win_02 (0.699). Therefore, decision-makers may prioritize the optimization of 
Win_01 to effectively reduce building energy consumption. Among the five parameter 
categories, WWR ranks the highest with an IG value of 0.624, while LVH ranks the lowest with 
an IG value of 0.118. The result means that WWR is the most significant factor in the Case 1 
optimization task, whereas LVH can be given less emphasis. 585 

 

Figure 10. Visualization of average IG values for design components and parameter 
categories in Case 1. (a) Average IG values for design components; (b) Average IG values for 

design parameter categories. 
Similarly, in Case 2, the placement of the ‘Open Space’ plot significantly impacts the 590 

average direct sunlight hours on the south-facing ground floors of urban blocks. Combining 
Figures 9 and 11, the three plots with the highest average IG values also correspond to the plots 
with the highest probabilities, i.e., plot 1st (IG of 0.327), plot 4th (IG of 0.371), and plot 7th (IG 
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of 0.349). This observation suggests that positioning the ‘Open Space’ plot along the central 
axis of the urban block is most conducive to achieving the optimal solutions. 595 

 

Figure 11. Visualization of average IG values for positioning ‘Open Space’ plot in Case 2. 

4.3 Sensitivity analysis 

A sensitivity analysis was conducted to determine the trade-off between time cost and optimal 
results, identifying the most effective experimental settings for the experimental and control 600 

groups. This experiment involved three key parameters: (i) the total iteration budget (N), with 
comparisons made between 100, 300, 500, 1000, 3000, and 5000; (ii) the distribution ratio (rd) 
between the two optimization phases, tested with ratios of 1:1, 1:2, and 1:4; and (iii) the 
partitioning method for sub-interval bins (BinM), which was evaluated using three scenarios: 
BinM = 10, BinM = N1 /10, and BinM = �𝑁𝑁1. Due to the computational expense of energy 605 

consumption simulations in Case 1, Case 2 was selected for comparing experimental 
configurations. The experimental and control groups were compared under the same iteration 
budget. 

Figures 12 and 13 visually compare the impact of different experimental configurations 
on the number of sub-interval bins and the maximum DSH values achieved via the AIGGC 610 

method. Where BinM is distinguished by symbols and colors: blue squares represent ‘BinM = 
N1 /10’, purple inverted triangles for ‘BinM = �𝑁𝑁1 ’, and red circles for ‘BinM = 10’. 
Meanwhile, solid symbols indicate that the experimental group outperformed the control group 
(i.e., obtained higher DSH values), while hollow symbols indicate the opposite. In addition, the 
distribution ratio (rd) is represented by pink circles of varying sizes. 615 
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Figure 12. Variation in bin counts for BinM methods across iteration budgets. 

 
Figure 13. Sensitivity analysis of experimental settings. 

From Figures 12 and 13, it can be observed that the number of sub-interval bins 620 

increases significantly with higher iteration budgets at ‘BinM = N1 /10’, indicating finer 
granularity for IG-guided analysis. When ‘BinM = N1 /10’, the frequency of finding the optimal 
solution is also higher under most iteration budgets. Interestingly, with ‘BinM = 10’, the 
number of bins remains constant regardless of the iteration budget, yet it consistently ensures 
the discovery of optimal solutions (e.g., performing well with budgets of 300, 500, 1000, and 625 

5000). In contrast, ‘BinM = �𝑁𝑁1’ shows relatively average performance. Furthermore, a side-
by-side comparison in Figure 12 reveals that a distribution ratio (rd) of 1:2 is most common 
near the top of the stack of points, implying a higher chance of finding the optimal solution. 



24 
 

The proportion of solid and hollow symbols is also noteworthy. Only hollow symbols 
are observed at a total iteration budget of 100, indicating that the generic SBO process is more 630 

suitable for small-budget optimization tasks. In medium-budget tasks (ranging from 300 to 
1000 iterations), the AIGGC method demonstrates clear advantages, particularly at 1000 
iterations, where it consistently outperforms the generic SBO across all experimental 
configurations. For large-budget tasks (e.g., 3000 and 5000 iterations), the AIGGC method 
demonstrates a more remarkable ability to find the optimal solution than the generic SBO, as 635 

solid symbols consistently appear at the top. 
In this study, considering the balance between the time cost of expensive simulations 

(e.g., energy simulation) and overall efficiency, we recommend the experimental configuration 
of ‘BinM = 10’, a distribution ratio (rd) of 1:2, and a total iteration budget of 300. 

5 Discussion 640 

This study presents the AIGGC method for high-dimensional SBO building designs for the 
first time, establishing an information-theory-based method for the automatic convergence of 
design parameter domains, thus reducing the dimensionality of the search space. Based on the 
dataset from first-phase optimization, the AIGGC method effectively enhances the 
performance of existing optimization algorithms under a limited iteration budget. Through IG-645 

guided fine-grained visual analysis at the parameter and component levels, Case 1 highlights 
the importance of the Win_01 object and the design parameter category WWR, while Case 2 
provides applicable insights into the central axis placement of the ‘Open Space’ plot. AIGGC 
applies information gain measurement into interpretable guidance, to enable designers and 
stakeholders to identify optimization strategies and make informed decisions in early design 650 

exploration. It can also enhance SBO efficiency in real-world sustainable building projects 
while improving stakeholders’ understanding of optimization convergence. 

Nevertheless, this study still has a few limitations. First, the analysis of design 
parameters was conducted independently based on information gain, while potential non-linear 
and complex interactions between parameters remain an area for future exploration. Second, 655 

future research will consider more complex real-world projects, incorporating factors such as 
practical occupant schedules, energy-efficient building materials, and the shading effects or 
microclimate conditions of the built environment to optimize thermal comfort and energy 
consumption, further assessing the method’s scalability to multi-objective optimization tasks. 
Third, future work will focus on dynamically enhancing search efficiency within the solution 660 

space by integrating advanced machine learning models and extending the applications to high-
dimensional optimization problems in other fields, such as architectural engineering and 
environmental science. 

6 Conclusion 

The proposed Automatic Information Gain-guided Convergence (AIGGC) method in this 665 

paper demonstrates promising experimental results in enhancing effectiveness and 
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interpretability for high-dimensional sustainable building designs. The AIGGC method 
reallocates a limited budget by utilizing first-phase optimization results as a dataset and 
performing IG-guided analysis on sub-intervals of each design parameter. The value of 
information gain assists stakeholders in quickly identifying high-information design 670 

parameters and high-quality domain intervals. The interpretable analysis of building design 
parameters and components enables stakeholders to converge design parameters by effectively 
reducing the number of design parameters as well as the size of the potential solution space. 
This study validated the AIGGC method for robustness and scalability in optimizing energy 
consumption and daylight quality at both the building and urban scales, while also significantly 675 

improving the convergence efficiency of three SBO algorithms — RBFOpt, CMA-ES, and GA. 
The findings in this study contribute to both the theory and application of SBO in high-

dimensional architectural design involving a large number of design parameters. The AIGGC 
method establishes an information-theory-based method for optimizing design parameters in 
addressing the challenge of the ‘curse of dimensionality’ in design search spaces. Furthermore, 680 

for non-derivative black-box SBO tasks, this method can enhance optimization efficiency 
while integrating interpretability analysis, enabling building designers and stakeholders to 
make informed and rational decisions in early architectural design exploration. 

Future work directions include multivariate analysis of design parameters, integration 
of IG-based metrics with advanced machine learning techniques to uncover non-linear 685 

correlations, and exploration of AIGGC’s applications in broader fields, such as multi-
objective optimization in engineering and environmental science. 
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Appendix A. Supplementary table and figures of experiments 882 

This section shows the detailed settings in experiments. 883 

Table A.1. Baseline settings for the original one-bedroom modular flat (Case 1). 884 

Category Items Values Unit Baseline model 

 
Simulation 

setting 

Location Hong Kong SAR - EUI = 159.599 kWh/m2·yr 
 
 

 

Climate zone 2-Hot - 
Construction set ASHRAE 90.1 2019 - 
HVAC system Window AC with no heat - 
Grid size (Gs1) 0.2 m 

 
 
 

Window 
parameters 

setting 

WWR1 0.45 - 
WWR2 0.35 - 
WWR3 0.30 - 
WWR4 0.10 - 
WH1&2 1.5 m 
WH3 1.2 m 
WH4 1 m 

WSH1&2 0.80 m 
WSH3; WSH4 1.20 m 

Window 
louver 

parameters 
setting 

LC1; LC2; LC3; LC4 1 - 
LA1; LA2; LA3; LA4 0 ° 

LVH1; LVH2; LVH3; LVH4 0 - 

 885 

Table A.2. Baseline settings for the urban block forms optimization (Case 2). 886 

Category Items Values Unit Baseline model 

Simulation 
setting 

Location Jianhu City, Jiangsu Province - DSH = 6.081 hours 
 
 

 

 

Grid size (Gs2) 1 m 
Date and time Jan. 20th 8:00-16:00 - 

 
 
 

Building 
types 

position 

OPos 5 - 
Pos1 C-2 - 
Pos2 P-4 - 
Pos3 P-2 - 
Pos4 S-3 - 
Pos5 P-2 - 
Pos6 P-4 - 
Pos7 P-2 - 
Pos8 S-2 - 

Window 
louver 

parameters 
setting 

NFP1 2 - 
NFS1 1 - 
NFC1 3 - 
NFP2 6 - 
NFS2 4 - 
NFC2 6 - 
NFP3 30 - 

NFP4; NFS3 13 - 

 887 
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Table A.3. Hyperparameters settings for single-objective algorithms. 889 

Algorithm Grasshopper 
plugin 

Hyperparameters Description Value 

 
 
 
GA  

 
 
 
Galapagos 

Population size Number of individuals in each generation 25 
Initial boost Controlling the exploration range in the first generation 2 
Max. Stagnant Managing convergence efficiency 50 
Elite rate Preserving best individuals across generations 5% 
Inbreeding rate Controlling genetic diversity by probability of parent solutions’ 

exchange 
75% 

CMA-ES Opossum Initial sigma Controls the initial step size of the search range  0.5 
 
 
 
RBFOpt  

 
 
 
Opossum 

Max. iterations The maximum number of iterations 10000 
Max. evaluations The maximum number of evaluations 10000 
Max. stalled 
cycles 

The maximum number of consecutive iterations allowed 
without significant improvement in the objective function value 

2000 

Local search box 
scaling 

Limit the scope of the local search False 

 890 
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